切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2017, Vol. 07 ›› Issue (04) : 145 -149. doi: 10.3877/cma.j.issn.2095-2015.2017.04.001

所属专题: 文献

述评

放射组学的兴起及其在消化系统肿瘤中的应用
孙钢1,()   
  1. 1. 250031 济南军区总医院医学影像科
  • 收稿日期:2017-07-16 出版日期:2017-08-01
  • 通信作者: 孙钢

The boom of radiomics and its application in digestive system tumors

Gang Sun1,()   

  1. 1. Department of Medical Imaging, Jinan Military General Hospital, Jinan 250031, China
  • Received:2017-07-16 Published:2017-08-01
  • Corresponding author: Gang Sun
  • About author:
    Corresponding author: Sun Gang, Email:
引用本文:

孙钢. 放射组学的兴起及其在消化系统肿瘤中的应用[J]. 中华消化病与影像杂志(电子版), 2017, 07(04): 145-149.

Gang Sun. The boom of radiomics and its application in digestive system tumors[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2017, 07(04): 145-149.

基于高通量自动化数据分析并量化影像特征的放射组学能够解析隐含在影像中患者细胞、生理、遗传变异等导致的影像变化信息,对于肿瘤的诊断、分期、个体化治疗及预后预测具有极大的潜力。本文就放射组学的概念及其在消化系统肿瘤中的应用研究及挑战进行综述。

Innumerable quantitative features is extracted from medical images and resulted in the conversion of images into mineable data with high-throughput computing, the process is termed radiomics.It has tremendous potential to analyze these data from biomedical images contain information that reflects underlying cells, physiology, genetic variation for tumor diagnosis, stage, individualized treatment and prognosis.This article overviews the concept of radiomics, and its application research and challenge in tumors of digestive system.

图1 放射组学流程[7]
1
苏会芳,周国锋,谢传淼,等.放射组学的兴起和研究进展[J].中华医学杂志,2015,95(7):553-556.
2
Parmar C, Leijenaar RT, Grossmann P, et al.Radiomic feature clusters and Prognostic Signatures specific forLung and Head & Neck cancer[J]. Sci Rep, 2015, 5: 11044.
3
Lambin P, Rios-Velazquez E, Leijenaar R, et al.Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446.
4
Chung CH, Levy S, Chaurand P, et al.Genomics and proteomics: emerging technologies in clinical cancer research[J]. Crit Rev Oncol Hemat, 2007, 61(1): 1-25.
5
Aens HJ, Velazquez ER, Leijenaar RT, et al.Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5: 4006.
6
Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential[J]. Comput Med Imaging Graph, 2007, 31(4/5): 198-211.
7
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data[J]. Radiology, 2016, 278(2): 563-577.
8
Rutman AM, Kuo MD.Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging[J]. Eur J Radiol, 2009, 70(2): 232-241.
9
Kuo MD, Jamshidi N. Behind the Numbers: Decoding Molecular Phenotypes with Radiogenomics-Guiding Principles and Technical Considerations[J]. Radiology, 2014, 270(2): 320-325.
10
Campbell PJ Yachida S, Mudie LJ, et al.The patterns and dynamics of genomic instability in metastatic pancreatic cancer[J]. Nature, 2010, 467(7319): 1109-1113.
11
Sequist LV, Waltman BA, Dias-Santagata D, et al.Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors[J]. Sci Transl Med, 2011, 3(75): 75ra26.
12
Lambin P, Rios-Velazquez E, Leijenaar R, et al.Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446.
13
Yachida S, Jones S, Bozic I, et al.Distant metastasis occurs late during the genetic evolution of pancreatic cancer[J]. Nature, 2010, 467(7319): 1114-1117.
14
Gerlinger M, Rowan AJ, Horswell S, et al.Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J]. N Engl J Med, 2012, 366(10): 883-892.
15
Sottoriva A, Spiteri I, Piccirillo SG, et al.Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics[J]. Proc Natl Acad Sci U S A, 2013, 110(10): 4009-4014.
16
Jackson A, O′Connor JPB, Parker GJM, et al.Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging[J]. Clin Cancer Res, 2007, 13(12): 3449-3459.
17
Diehn M, Nardini C, Wang DS, et al.Identification of noninvasive imaging surrogates for brain tumor gene-expression modules[J]. Proc Natl Acad Sci U S A, 2008, 105(13): 5213-5218.
18
Segal E, Sirlin CB, Ooi C, et al.Decoding global gene expression programs in liver cancer by noninvasive imaging[J]. Nat Biotechnol, 2007, 25(6): 675-680.
19
Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Trans Syst Man Cybern, 1973, 3(6): 610-621.
20
Davnall F, Yip CS, Ljungqvist G, et al.Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? [J]. Insights Imaging, 2012, 3(6): 573-589.
21
O′Connor JP, Rose CJ, Waterton JC, et al.Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome[J]. Clin Cancer Res, 2015, 21(2): 249-257.
22
Rose CJ, Mills SJ, O′Connor JP, et al.Quantifying spatial heterogeneity in dynamic contrast-enhanced MRI parameter maps[J]. Magn Reson Med, 2009, 62(2): 488-499.
23
Larkin TJ, Canuto HC, Kettunen MI, et al.Analysis of image heterogeneity using 2D Minkowski functionals detects tumor responses to treatment[J]. Magn Reson Med, 2014, 71(1): 402-410.
24
Grossmann P, Grove O, El-Hachem N, et al.TU-CD-BRB-02: Best in physics(joint imaging-therapy): Identification of Molecular Phenotypes by Integrating Radiomics and Genomics[J]. Med Phys, 2015, 42(6Part32): 3602-3602.
25
Wibmer A, Hricak H, Gondo T, et al.Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores[J]. Eur Radiol, 2015, 25(10): 2840-2850.
26
Fehr D, Veeraraghavan H, Wibmer A, et al.Automatic classification of prostate cancer Gleason scores from multi-parametric magnetic resonance images[J]. Proc Natl Acad Sci USA, 2015, 112(46): E6265-6273.
27
Song B, Zhang G, Lu H, et al.Volumetric texture features from higher-order images for diagnosis of colon lesions via CT colonography[J]. Int J Comput Assist Radiol Surg, 2014, 9(6): 1021-1031.
28
Ganeshan B, Skogen K, Pressney I, et al.Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival[J]. Clin Radiol, 2012, 67(2): 157-164.
29
Liang C, Huang Y, He L et al.The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer[J]. Oncotarget, 2016, 7(21): 31401-31412.
30
Hayano K, Yoshida H, Zhu AX, et al.Fractal analysis of contrast-enhanced CT images to predict survival of patients with hepatocellular carcinoma treated with sunitinib[J]. Dig Dis Sci, 2014, 59(8): 1996-2003.
31
Huang YQ, Liang CH, He L, et al.Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer[J]. J Clin Oncol, 2016, 34(18): 2157-2164.
32
Giganti F, Antunes S, Salerno A, et al.Gastric cancer: texture analysis from multidetector computed tomography as a potential preoperative prognostic biomarker[J]. Eur Radiol, 2017, 27(5): 1831-1839.
33
Simpson AL, Doussot A, Creasy JM, et al.Computed Tomography Image Texture: A Noninvasive Prognostic Marker of Hepatic Recurrence After Hepatectomy for Metastatic Colorectal Cancer[J]. Ann Surg Oncol, 2017 May 30.
34
Kuo MD, Gollub J, Sirlin CB, et al.Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma[J]. J Vasc Interv Radiol, 2007, 18(7): 821-831.
35
Yip, CS, Davnall F, Kozarski R, et al.CT Tumoral Heterogeneity as a Prognostic Marker in Primary Esophageal Cancer Following Neoadjuvant Chemotherapy[J]. Pract Radiat Oncol, 2013, 3(2 Suppl 1): S3.
36
Nougaret S, Vargas HA, Lakhman Y, et al.Intravoxel Incoherent Motion-derived Histogram Metrics for Assessment of Response after Combined Chemotherapy and Radiation Therapy in Rectal Cancer: Initial Experience and Comparison between Single-Section and Volumetric Analyses[J]. Radiology, 2016, 280(2): 446-454.
37
Beukinga RJ, Hulshoff JB, van Dijk LV, et al.Predicting response to neoadjuvant chemoradiotherapy in esophageal cancer with textural features derived from pretreatment 18F-FDG PET/CT imaging[J]. J Nucl Med, 2017, 58(5): 723-729.
[1] 韩春颖, 王婷婷, 李艳艳, 朴金霞. 子宫内膜癌患者淋巴管间隙浸润预测因素研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 403-409.
[2] 任德标, 周丽娟, 林智刚, 刘威宏. CT放射组学对NSCLC患者抗PD-L1疗效分析[J]. 中华肺部疾病杂志(电子版), 2021, 14(05): 614-616.
[3] 卢晓倩, 孟繁杨, 窦乐, 曹殿波. 肺腺癌MSCT影像特征与EGFR突变相关性分析[J]. 中华肺部疾病杂志(电子版), 2020, 13(03): 319-323.
[4] 于冬洋, 韩雷, 单奔, 柳勇, 赵正宇, 马乐艳. 基于CT增强的直方图对腮腺多形性腺瘤与腺淋巴瘤的应用价值[J]. 中华消化病与影像杂志(电子版), 2022, 12(05): 291-295.
[5] 刘雪影, 许良璧, 李大欢, 王景林. COL11A1在消化系统肿瘤中的研究进展[J]. 中华胃肠内镜电子杂志, 2021, 08(01): 42-45.
[6] 黄嘉宝, 桑玉, 全小庆, 张存泰. 老年消化道肿瘤患者外周血中系统免疫炎症指数的研究进展[J]. 中华老年病研究电子杂志, 2019, 06(04): 35-39.
阅读次数
全文


摘要