切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2022, Vol. 12 ›› Issue (02) : 65 -68. doi: 10.3877/cma.j.issn.2095-2015.2022.02.001

述评

影像组学在预测直肠癌淋巴结转移中的应用
吴瑞1, 李爱银1,()   
  1. 1. 250012 济南,山东大学齐鲁医学院;250014 济南,山东第一医科大学第一附属医院 山东省千佛山医院放射科
  • 收稿日期:2021-11-30 出版日期:2022-04-01
  • 通信作者: 李爱银
  • 基金资助:
    山东省科技发展计划(2014GSF118086); 济南市科技计划(201907034)

Application of radiomics in predicting lymph node metastasis of rectal cancer

Rui Wu1, Aiyin Li1()   

  • Received:2021-11-30 Published:2022-04-01
  • Corresponding author: Aiyin Li
引用本文:

吴瑞, 李爱银. 影像组学在预测直肠癌淋巴结转移中的应用[J]. 中华消化病与影像杂志(电子版), 2022, 12(02): 65-68.

Rui Wu, Aiyin Li. Application of radiomics in predicting lymph node metastasis of rectal cancer[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2022, 12(02): 65-68.

1
Mattiuzzi C, Lippi G. Current Cancer Epidemiology [J]. J Epidemiol Glob Health, 2019, 9(4): 217-222.
2
Benson AB, Venook AP, Al-Hawary MM, et al. Rectal Cancer, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology [J]. J Natl Compr Canc Netw, 2018, 16(7): 874-901.
3
Kwon TS, Choi SB, Lee YS, et al. Novel Methods of Lymph Node Evaluation for Predicting the Prognosis of Colorectal Cancer Patients with Inadequate Lymph Node Harvest [J]. Cancer Res Treat, 2016, 48(1): 216-224.
4
Gröne J, Loch FN, Taupitz M, et al. Accuracy of Various Lymph Node Staging Criteria in Rectal Cancer with Magnetic Resonance Imaging [J]. J Gastrointest Surg, 2018, 22(1): 146-153.
5
García-Figueiras R, Baleato-González S, Padhani AR, et al. Advanced Imaging Techniques in Evaluation of Colorectal Cancer [J]. Radiographics, 2018, 38(3): 740-765.
6
Delli Pizzi A, Basilico R, Cianci R, et al. Rectal cancer MRI: protocols, signs and future perspectives radiologists should consider in everyday clinical practice [J]. Insights Imaging, 2018, 9(4): 405-412.
7
Al-Sukhni E, Milot L, Fruitman M, et al. Diagnostic accuracy of MRI for assessment of T category, lymph node metastases, and circumferential resection margin involvement in patients with rectal cancer: a systematic review and meta-analysis [J]. Ann Surg Oncol, 2012, 19(7): 2212-2223.
8
Park JS, Jang YJ, Choi GS, et al. Accuracy of preoperative MRI in predicting pathology stage in rectal cancers: node-for-node matched histopathology validation of MRI features [J]. Dis Colon Rectum, 2014, 57(1): 32-38.
9
Xu L, Zhang C, Zhang Z, et al. Value of 3Tesla MRI in the preoperative staging of mid-low rectal cancer and its impact on clinical strategies [J]. Asia Pac J Clin Oncol, 2020, 16(5): e216-e222.
10
Langman G, Patel A, Bowley DM. Size and distribution of lymph nodes in rectal cancer resection specimens [J]. Dis Colon Rectum, 2015, 58(4): 406-414.
11
Nougaret S, Tibermacine H, Tardieu M, et al. Radiomics: an Introductory Guide to What It May Foretell [J]. Curr Oncol Rep, 2019, 21(8): 70.
12
Avanzo M, Stancanello J, El Naqa I. Beyond imaging: The promise of radiomics [J]. Phys Med, 2017, 38: 122-139.
13
Rogers W, Thulasi Seetha S, Refaee TAG, et al. Radiomics: from qualitative to quantitative imaging [J]. Br J Radiol, 2020, 93(1108): 20190948.
14
Aerts HJ. The Potential of Radiomic-Based Phenotyping in Precision Medicine: A Review [J]. JAMA Oncol, 2016, 2(12): 1636-1642.
15
Ibrahim A, Primakov S, Beuque M, et al. Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework [J]. Methods, 2021, 188: 20-29.
16
Park BW, Kim JK, Heo C, et al. Reliability of CT radiomic features reflecting tumour heterogeneity according to image quality and image processing parameters [J]. Sci Rep, 2020, 10(1): 3852.
17
Haibe-Kains B, Adam GA, Hosny A, et al. Transparency and reproducibility in artificial intelligence [J]. Nature, 2020, 586(7829): E14-E16.
18
Huang YQ, Liang CH, He L, et al. Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer [J]. J Clin Oncol, 2016, 34(18): 2157-2164.
19
颜智敏,冯智超,曹鹏,等.多层螺旋CT图像纹理分析对直肠癌转移性淋巴结的诊断价值[J].中华放射学杂志, 2017, 51(6): 432-436.
20
李燕,张凯,王小平,等. CT纹理分析对于术前预测直肠癌淋巴结转移的初步研究[J].临床放射学杂志, 2021, 40(5): 930-934.
21
Kalisz KR, Enzerra MD, Paspulati RM. MRI Evaluation of the Response of Rectal Cancer to Neoadjuvant Chemoradiation Therapy [J]. Radiographics, 2019, 39(2): 538-556.
22
Yang L, Liu D, Fang X, et al. Rectal cancer: can T2WI histogram of the primary tumor help predict the existence of lymph node metastasis? [J]. Eur Radiol, 2019, 29(12): 6469-6476.
23
Ma X, Shen F, Jia Y, et al. MRI-based radiomics of rectal cancer: preoperative assessment of the pathological features [J]. BMC Med Imaging, 2019, 19(1): 86.
24
谭显政,陈浩,张亭,等.基于影像组学分类器术前预测直肠非黏液性腺癌淋巴结转移[J].中南大学学报(医学版), 2019, 44(3): 271-276.
25
Yang YS, Feng F, Qiu YJ, et al. High-resolution MRI-based radiomics analysis to predict lymph node metastasis and tumor deposits respectively in rectal cancer [J]. Abdom Radiol (NY), 2021, 46(3): 873-884.
26
Seber T, Caglar E, Uylar T, et al. Diagnostic value of diffusion-weighted magnetic resonance imaging: differentiation of benign and malignant lymph nodes in different regions of the body [J]. Clin Imaging, 2015, 39(5): 856-862.
27
Cerny M, Dunet V, Prior JO, et al. Initial Staging of Locally Advanced Rectal Cancer and Regional Lymph Nodes: Comparison of Diffusion-Weighted MRI With 18F-FDG-PET/CT [J]. Clin Nucl Med, 2016, 41(4): 289-295.
28
骆玉辉,滕录霞,张远鸿,等. MRI-DWI技术对直肠癌及术前分期的诊断价值分析[J].医学影像学杂志, 2018, 28(1): 121-123.
29
Liu L, Liu Y, Xu L, et al. Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer [J]. J Magn Reson Imaging, 2017, 45(6): 1798-1808.
30
Yin JD, Song LR, Lu HC, et al. Prediction of different stages of rectal cancer: Texture analysis based on diffusion-weighted images and apparent diffusion coefficient maps [J]. World J Gastroenterol, 2020, 26(17): 2082-2096.
31
Li C, Yin J. Radiomics Based on T2-Weighted Imaging and Apparent Diffusion Coefficient Images for Preoperative Evaluation of Lymph Node Metastasis in Rectal Cancer Patients [J]. Front Oncol, 2021, 11: 671354.
32
陈立达,徐建波,吴晖,等.多模态影像组学预测直肠癌淋巴结转移[J].中山大学学报(医学版), 2018, 39(4): 591-599.
33
Meng X, Xia W, Xie P, et al. Preoperative radiomic signature based on multiparametric magnetic resonance imaging for noninvasive evaluation of biological characteristics in rectal cancer [J]. Eur Radiol, 2019, 29(6): 3200-3209.
34
李陆,王瑞瑞,孙冬雪,等.临床-影像组学诺模图在术前预测直肠癌淋巴结转移的应用价值[J].临床放射学杂志, 2021, 40(10): 1958-1963.
35
van Timmeren JE, Cester D, Tanadini-Lang S, et al. Radiomics in medical imaging-"how-to" guide and critical reflection [J]. Insights Imaging, 2020, 11(1): 91.
36
Zhao X, Xie P, Wang M, et al. Deep learning-based fully automated detection and segmentation of lymph nodes on multiparametric-mri for rectal cancer: A multicentre study [J]. EBioMedicine, 2020, 56: 102780.
No related articles found!
阅读次数
全文


摘要