切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2023, Vol. 13 ›› Issue (06) : 369 -372. doi: 10.3877/cma.j.issn.2095-2015.2023.06.001

述评

超高场磁共振成像的发展现状与展望
孙钢()   
  1. 250031 济南,中国人民解放军联勤保障部队第九六〇医院放射诊断科
  • 收稿日期:2023-06-23 出版日期:2023-12-01
  • 通信作者: 孙钢

Development status and prospects of ultrahigh-field magnetic resonance imaging

Gang Sun()   

  1. The 960th Hospital of Joint Logistics Support Force of PLA, Jinan 250031, China
  • Received:2023-06-23 Published:2023-12-01
  • Corresponding author: Gang Sun
引用本文:

孙钢. 超高场磁共振成像的发展现状与展望[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 369-372.

Gang Sun. Development status and prospects of ultrahigh-field magnetic resonance imaging[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2023, 13(06): 369-372.

超高场磁共振成像的研究进展为生物医学和诊断MRI的发展提供了有意义的技术。本文介绍了≥7T磁共振成像系统的发展现状,包括新型高温超导全身磁体设计、优化射频线圈装置、高性能梯度系统。超高场磁共振可揭示神经、神经血管、心血管、肌肉骨骼、肾脏、肝脏和眼部系统及其他器官和组织的细节,对于神经学、神经病学、放射学、心脏病学、肿瘤学、肾脏学、眼科等其他临床研究具有巨大的潜在价值。

The progress of ultrahigh-field magnetic resonance imaging(UHFMRI)provides meaningful technologies for the advancement of biomedical and diagnostic MRI.The paper reviews the development status of UHF-MR(≥7T). This comprises a novel whole-body magnet design utilizing high temperature superconductor; an optimized radiofrequency coil setup for proton measurement in the brain; and a high-performance gradient set.UFHMRI can reveal the details of nerves, neurovascular, cardiovascular, musculoskeletal, kidney, liver, and ocular systems, as well as other organs and tissues, and has a great value of potential clinical uses, with implications for neuroscience, neurology, radiology, cardiology, oncology, nephrology, ophthalmology and other clinical fields.

1
Wang IOh SIngmar Blümcke,et al.Value of 7T MRI and post-processing in patients with nonlesional 3T MRI undergoing epilepsy presurgical evaluation[J].Epilepsia202061(11):2509-2520.
2
Noebauer-Huhmann IMSzomolanyi PKronnerwetter C,et al.Brain tumours at 7T MRI compared to 3T—contrast effect after half and full standard contrast agent dose:initial results[J]. Eur Radiol20155(1):106-112.
3
Ciantis A DeBarba CTassi L,et al.7T MRI in focal epilepsy with unrevealing conventional field strength imaging[J]. Epilepsia201657(3):445-454.
4
Pohmann RSpeck OScheffler K.Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3,7,and 9.4 Tesla using current receive coil arrays[J].Magn Reson Med201675(2):801-809.
5
Vaughan TDelabarre LSnyder C,et al.9.4 T human MRI:preliminary results[J].Magn Reson Med201056(6):1274-1282.
6
GrantAndreaMetzgerVan de Moortele Gregory J.,et al.10.5 T MRI static field effects on human cognitive,vestibular,and physiological function[J].Magn Reson Imaging202073(1):163-176.
7
Le Ster CGrant AVan de Moortele PF,et al.Magnetic feld strength dependent SNR gain at the center of a spherical phantom and up to 11.7T[J].Magn Reson Mede202288(5):2131-2138.
8
Bates SDumoulin SOFolkers PJM,et al.A vision of 14 T MR for fundamental and clinical science[J].MAGMA202336(2):211-225.
9
Li YRoell S.Key designs of a short-bore and cryogen-free high temperature superconducting magnet system for 14 T whole-body MRI[J].Supercond Sci Technol202134:125005-125005.
10
Awaji SWatanabe KOguro H,et al.First performance test of a 25 T cryogen-free super-conducting magnet[J].Supercond Sci Technol201730:6500-65001.
11
He XErturk MAGrant A,et al First in-vivo human imaging at 10.5T:Imaging the body at 447 MHz[J].Magn Reson Med202084(1):289-303.
12
Eigentler TWKuehne ABoehmert L,et al.32-Channel self-grounded bow-tie transceiver array for cardiac MR at 7.0T[J].Magn Reson Med202186(5):2862-2879.
13
May MWHansen SJDMahmutovic M,et al.A patient-friendly 16-channel transmit/64-channel receive coil array for combined head-neck MRI at 7 tesla[J].Magn Reson Med202288(3):1419-1433.
14
Avdievich NISolomakha GRuhm L,et al.Decoupling of folded-end dipole antenna elements of a 94 T human head array using an RF shield[J].NMR Biomed202033(9):e4351.
15
Avdievich NIRuhm LDorst J,et al.Double-tuned(31)P/(1)H human head array with high performance at both frequencies for spectroscopic imaging at 9.4T[J].Magn Reson Med202084(2):1076-1089.
16
Sadeghi-Tarakameh ADelaBarre LLagore RL, et al.In vivo human head MRI at 10.5T:a radiofrequency safety study and preliminary imaging results[J].Magn Reson Med202084(1):484-496.
17
Cao ZYan XGore JC,et al.Designing parallel transmit head coil arrays based on radiofrequency pulse performance[J].Magn Reson Med202083(6):2331-2342.
18
Raaijmakers AJItaliaander MVoogt IJ,et al.The fractionated dipole antenna:a new antenna for body imaging at 7 tesla[J].Magn Reson Med201675(3):1366-1374.
19
Ivanov DDe Martino FFormisano E,et al.Magnetic resonance imaging at 9.4 T:the Maastricht journey[J]. MAGMA202336(2):159-173.
20
Raimondo LHeij JKnapen T, et al.Towards functional spin-echo BOLD line-scanning in humans at 7T[J]. MAGMA202336(2):317-327.
21
Sache AReymond PBrina O,et al.Near-wall hemodynamic parameters quantification in in vitro intracranial aneurysms with 7 T PC-MRI[J].MAGMA202336(2):295-308.
22
Terekhov MElabyad IALohr D,et al. High-resolution imaging of the excised porcine heart at a whole-body 7 T MRI system using an 8Tx/16Rx pTx coil[J].MAGMA202336(2):279-293.
23
Harrevelt SDRoos THMKlomp DWJ,et al.Simulation-based evaluation of SAR and flip angle homogeneity for five B1 transmit head arrays at 14T[J].MAGMA202336(2):245-255.
24
Winter LNiendorf T.Electrodynamics and radiofrequency antenna concepts for human magnetic resonance at 23.5 T(1 GHz)and beyond[J].MAGMA201629(3):641-656.
25
Nurzed BKuehne AAigner CS,et al.Radiofrequency antenna concepts for human cardiac MR at 14.0 T[J].MAGMA202336(2):257-277.
26
Postuma RBBerg DStern M,et al.MDS clinical diagnostic criteria for Parkinson′s disease[J].Mov Disord201530(12):1591-601.
27
Kordower JHOlanow CWDodiya HB,et al.Disease duration and the integrity of the nigrostriatal system in Parkinson′s disease[J].Brain2013136(8):2419-2431.
28
Fereshtehnejad SMYao CPelletier A,et al.Evolution of prodromal Parkinson′s disease and dementia with Lewy bodies:a prospective study[J].Brain2019142(7):2051-2067.
29
Helmich RCHallett MDeuschl G, et al.Cerebral causes and consequences of parkinsonian resting tremor:a tale of two circuits?[J].Brain2012135(11):3206-3226.
30
Bae YJKim JMSohn CH,et al.Imaging the substantia nigra in parkinson disease and other Parkinsonian syndromes[J].Radiology2021300(2):260-278.
31
Borghammer P.How does Parkinson′s disease begin? Perspectives on neuroanatomical pathways,prions,and histology[J].Mov Disord201833(1):48-57.
32
Isaacs BRMulder MJ, Groot JM,et al.3 versus 7 Tesla magnetic resonance imaging for parcellations of subcortical brain structures in clinical settings[J].PLoS One202024,15(11):e0236208.
33
Mathiopoulou VRijks NCaan MWA,et al.Utilizing 7-Tesla Subthalamic Nucleus Connectivity in Deep Brain Stimulation for Parkinson Disease[J].Neuromodulation202326(2):333-339.
34
Parmigiani EScalera MMori E,et al.Old stars and new players in the brain tumor microenvironment[J].Front Cell Neurosci202115:709917.
35
Oestreich LKLO′Sullivan MJ.Transdiagnostic in vivo magnetic resonance imaging markers of neuroinfammation[J].Biol Psychiatry Cogn Neurosci Neuroimaging20227(7):638-658.
36
Korzowski AWeckesser NFranke VL,et al.Mapping an extended metabolic profle of gliomas using high-resolution 31P MRSI at 7T[J].Front Neurol202112:735071.
37
Kersch CNAmbady PHamilton BE,et al.MRI and PET of brain tumor neuroinfammation in the era of immunotherapy,from the AJR special series on infammation[J].AJR Am J Roentgenol2022218(4):582-596.
38
Croci DSantalla Méndez RTemme S,et al.Multispectral fuorine-19 MRI enables longitudinal and noninvasive monitoring of tumor-associated macrophages[J].Sci Transl Med202214(667):eabo2952.
39
Geurts JJLPouwels PJ, et al.Cortical lesions in multiple sclerosis:combined postmortem MR imaging and histopathology[J].AJNR Am J Neuroradiol200526(3):572-577.
40
Schmidt RKleban EBollmann S,et al.Scaling the mountains:what lies above 7 Tesla magnetic resonance?[J].MAGMA202336(2):151-157.
41
Van den Brink HKopczak AArts T,et al.SVDs@target group.Zooming in on cerebral small vessel function in small vessel diseases with 7T MRI:Rationale and design of the " ZOOM@SVDs" study[J].Cereb Circ Cogn Behav20212:100013.
42
Geurts LJZwanenburg JJMKlijn CJM,et al.Higher pulsatility in cerebral perforating arteries in patients with small vessel disease related stroke,a 7T MRI study[J].Stroke201950(1):62-68.
43
Shi ZZhao XZhu S,et al.Time-of-Flight Intracranial MRA at 3 T versus 5 T versus 7 T:Visualization of Distal Small Cerebral Arteries[J].Radiology2023306(1):207-217.
44
Zhang ZKong QZhang Y,et al.Improved characterization of lenticulostriate arteries using compressed sensing time-of-flight at 7T[J]. Eur Radiol202333(10):6939-6947.
45
Xie XZhang ZKong Q,et al.M2 middle cerebral artery dissection on 7T MRI[J]. Stroke Vasc Neurol2022 Dec,7(6):550.
46
Wang LZhang YSui B,et al.Microaneurysm Diagnosed With 7T Magnetic Resonance Imaging[J]. Stroke202253(6):e224-e225.
47
Cheng KDuan QHu J, et al.Evaluation of postcontrast images of intracranial tumors at 7T and 3T MRI:An intra-individual comparison study[J]. CNS Neurosci Ther202329(2):559-565.
48
Zuo MChen WZhou Z.Multimodal Neuroimaging Reveals and Guides Treatment of a Middle Cerebral Artery Web[J].JAMA Neurol2023.
49
Sun PWu ZLin L,et al.MR-Nucleomics:The study of pathological cellular processes with multinuclear magnetic resonance spectroscopy and imaging in vivo[J].NMR Biomed202336(2):e4845.
[1] 詹启敏. 健康中国发展背景下的科技创新[J]. 中华神经创伤外科电子杂志, 2018, 04(04): 193-196.
[2] 杨逸飞, 李昊. 脑部类淋巴系统的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(01): 52-56.
[3] 姜荣涛, 戚世乐, 吴静, 李想, 赵敏, 隋婧, 禚传君. 基于多模态脑影像和机器学习算法的个体行为预测研究现状及未来趋势[J]. 中华诊断学电子杂志, 2021, 09(03): 145-148.
阅读次数
全文


摘要