切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2024, Vol. 14 ›› Issue (04) : 289 -296. doi: 10.3877/cma.j.issn.2095-2015.2024.04.001

专家论坛

慢性胰腺炎抗炎和抗纤维化治疗的研究进展
谭欣1, 王鹏源2, 胡良皞1,()   
  1. 1. 200433 上海,海军军医大学第一附属医院消化内科
    2. 200433 上海,海军军医大学第一附属医院消化内科;067000 河北承德,联勤保障部队第九八一医院消化内科
  • 收稿日期:2024-04-13 出版日期:2024-08-01
  • 通信作者: 胡良皞
  • 基金资助:
    国家自然科学基金(82070664,82270679,82104257); 上海市曙光计划(20SG36); 上海申康医院发展中心新兴前沿项目(SHDC12021107)

Research progress on anti-inflammatory and anti-fibrotic therapy for chronic pancreatitis

Xin Tan1, Pengyuan Wang2, Lianghao Hu1,()   

  1. 1. Department of Gastroenterology, the First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
    2. Department of Gastroenterology, the First Affiliated Hospital, Naval Medical University, Shanghai 200433, China; Department of Gastroenterology, the 981st Hospital of Joint Logistic Support Force, Chengde 067000, China
  • Received:2024-04-13 Published:2024-08-01
  • Corresponding author: Lianghao Hu
引用本文:

谭欣, 王鹏源, 胡良皞. 慢性胰腺炎抗炎和抗纤维化治疗的研究进展[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 289-296.

Xin Tan, Pengyuan Wang, Lianghao Hu. Research progress on anti-inflammatory and anti-fibrotic therapy for chronic pancreatitis[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2024, 14(04): 289-296.

慢性胰腺炎(CP)以胰腺慢性炎症及纤维化为特征,胰腺腺泡细胞损伤、星状细胞活化及炎症细胞浸润共同影响疾病进程。长期以来,CP治疗以控制症状和防治并发症为主,临床上暂无干预疾病发展的有效药物。因此,寻找可干预的分子靶点和药物是CP研究的重要方向。本文综述了CP的发病机制及抗炎抗纤维化治疗研究进展,以期为CP的治疗提供更多选择。

Chronic pancreatitis (CP) is characterized by chronic inflammation and fibrosis of the pancreas, with pancreatic acinar cell injury, stellate cell activation, and inflammatory cell infiltration collectively influencing the disease process. For a long time, the treatment of CP has focused on controlling symptoms and preventing complications, with no effective drugs available for intervening in the disease progression clinically. Therefore, the search for molecular targets and drugs that could be intervened is an important direction in CP research. This article reviews the pathogenesis of CP and the progress in anti-inflammatory and anti-fibrotic treatment research, aiming to provide more treatment options for CP.

表1 干细胞疗法治疗慢性胰腺炎的研究
[1]
Hart PA, Conwell DL. Chronic Pancreatitis: Managing a Difficult Disease[J]. Am J Gastroenterol, 2020, 115(1): 49-55.
[2]
An J, Jiang T, Qi L, et al. Acinar cells and the development of pancreatic fibrosis[J]. Cytokine Growth Factor Rev, 2023, 71-72: 40-53.
[3]
Hu F, Lou N, Jiao J, et al. Macrophages in pancreatitis: Mechanisms and therapeutic potentia[J]l. Biomed Pharmacother, 2020, 131: 110693.
[4]
Xiao AY, Tan ML, Wu LM, et al. Global incidence and mortality of pancreatic diseases: a systematic review, meta-analysis, and meta-regression of population-based cohort studies[J]. Lancet Gastroenterol Hepatol, 2016, 1(1): 45-55.
[5]
Barry K, Chronic Pancreatitis: Diagnosis and Treatment[J]. Am Fam Physician, 2018, 97(6): 385-393.
[6]
Li B Q, Liu X Y, Mao T, et al. The research progress of anti-inflammatory and anti-fibrosis treatment of chronic pancreatitis[J]. Front Oncol, 2022, 12: 1050274.
[7]
Cárdenas-Jaén K, Vaillo-Rocamora A, Gracia Á, et al. Simvastatin in the Prevention of Recurrent Pancreatitis: Design and Rationale of a Multicenter Triple-Blind Randomized Controlled Trial, the SIMBA Trial[J]. Front Med(Lausanne), 2020, 7: 494.
[8]
Apte M, Pirola R, Wilson J, The fibrosis of chronic pancreatitis: new insights into the role of pancreatic stellate cells[J]. Antioxid Redox Signal, 2011, 15(10): 2711-22.
[9]
Bynigeri R R, Jakkampudi A, Jangala R, et al. Pancreatic stellate cell: Pandora's box for pancreatic disease biology[J]. World J Gastroenterol, 2017, 23(3): 382-405.
[10]
Cannon A, Thompson CM, Bhatia R, et al. Molecular mechanisms of pancreatic myofibroblast activation in chronic pancreatitis and pancreatic ductal adenocarcinoma[J]. J Gastroenterol, 2021, 56(8): 689-703.
[11]
Jin G, Hong W, Guo Y, et al. Molecular Mechanism of Pancreatic Stellate Cells Activation in Chronic Pancreatitis and Pancreatic Cancer[J]. J Cancer, 2020, 11(6): 1505-1515.
[12]
Radoslavova S, Folcher A, Lefebvre T, et al. Orai1 Channel Regulates Human-Activated Pancreatic Stellate Cell Proliferation and TGF(β1) Secretion through the AKT Signaling Pathway[J]. Cancers(Basel), 2021, 13(10): 2395.
[13]
Wu N, Xu XF, Xin JQ, et al. The effects of nuclear factor-kappa B in pancreatic stellate cells on inflammation and fibrosis of chronic pancreatitis[J]. J Cell Mol Med, 2021, 25(4): 2213-2227.
[14]
Apte MV, Haber PS, Applegate TL, et al. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture[J]. Gut, 1998, 43(1): 128-33.
[15]
Schneider E, Schmid-Kotsas A, Zhao J, et al. Identification of mediators stimulating proliferation and matrix synthesis of rat pancreatic stellate cells[J]. Am J Physiol Cell Physiol, 2001, 281(2): C532-543.
[16]
Bachem MG, Schneider E, Gross H, et al. Identification, culture, and characterization of pancreatic stellate cells in rats and humans[J]. Gastroenterology, 1998, 115(2): 421-32.
[17]
Mews P, Phillips P, Fahmy R, et al. Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis[J]. Gut, 2002, 50(4): 535-41.
[18]
Luttenberger T, Schmid-Kotsas A, Menke A, et al. Platelet-derived growth factors stimulate proliferation and extracellular matrix synthesis of pancreatic stellate cells: implications in pathogenesis of pancreas fibrosis[J]. Lab Invest, 2000, 80(1): 47-55.
[19]
Li C X, Cui L H, Zhuo Y Z, et al. Inhibiting autophagy promotes collagen degradation by regulating matrix metalloproteinases in pancreatic stellate cells[J]. Life Sci, 2018, 208: 276-283.
[20]
Shek F W, Benyon R C, Walker F M, et al. Expression of transforming growth factor-beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis[J]. Am J Pathol, 2002, 160(5): 1787-98.
[21]
Ren Y, Zhang J, Wang M, et al. Identification of irisin as a therapeutic agent that inhibits oxidative stress and fibrosis in a murine model of chronic pancreatitis[J]. Biomed Pharmacother, 2020, 126: 110101.
[22]
Xia D, Halder B, Godoy C, et al. NADPH oxidase 1 mediates caerulein-induced pancreatic fibrosis in chronic pancreatitis[J]. Free Radic Biol Med, 2020, 147: 139-149.
[23]
Yan B, Cheng L, Jiang Z, et al. Resveratrol Inhibits ROS-Promoted Activation and Glycolysis of Pancreatic Stellate Cells via Suppression of miR-21[J]. Oxid Med Cell Longev, 2018, 2018: 1346958.
[24]
Ji B, Gaiser S, Chen X, et al. Intracellular trypsin induces pancreatic acinar cell death but not NF-kappaB activation[J]. J Biol Chem, 2009, 284(26): 17488-98.
[25]
Pandol SJ, Gorelick FS, Lugea A, Environmental and genetic stressors and the unfolded protein response in exocrine pancreatic function - a hypothesis[J]. Front Physiol, 2011, 2: 8.
[26]
Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 421-438.
[27]
Xia L, Xu Z, Zhou X, et al. Impaired autophagy increases susceptibility to endotoxin-induced chronic pancreatitis[J]. Cell Death Dis, 2020, 11(10): 889.
[28]
Diakopoulos K N, Lesina M, Wörmann S, et al. Impaired autophagy induces chronic atrophic pancreatitis in mice via sex- and nutrition-dependent processes[J]. Gastroenterology, 2015, 148(3): 626-638. e17.
[29]
Wooten M W, Geetha T, Seibenhener M L, et al. The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination[J]. J Biol Chem, 2005, 280(42): 35625-35629.
[30]
Chen H, Tan P, Qian B, et al. Hic-5 deficiency protects cerulein-induced chronic pancreatitis via down-regulation of the NF-κB(p65)/IL-6 signalling pathway[J]. J Cell Mol Med, 2020, 24(2): 1488-1503.
[31]
Liu J, Gao M, Nipper M, et al. Activation of the intrinsic fibroinflammatory program in adult pancreatic acinar cells triggered by Hippo signaling disruption[J]. PLoS Biol, 2019, 17(9): e3000418.
[32]
Roh JS, Sohn DH. Damage-Associated Molecular Patterns in Inflammatory Diseases[J]. Immune Netw, 2018, 18(4): e27.
[33]
Kang R, Lotze MT, Zeh HJ, et al. Cell death and DAMPs in acute pancreatitis[J]. Mol Med, 2014, 20(1): 466-77.
[34]
Yang W J, Cao R C, Xiao W, et al. Acinar ATP8b1/LPC pathway promotes macrophage efferocytosis and clearance of inflammation during chronic pancreatitis development[J]. Cell Death Dis, 2022, 13(10): 893.
[35]
Yao Y, Xu X H, Jin L, Macrophage Polarization in Physiological and Pathological Pregnancy[J]. Front Immunol, 2019, 10: 792.
[36]
Jancsó Z, Sahin-Tóth M, Chronic progression of cerulein-induced acute pancreatitis in trypsinogen mutant mice[J]. Pancreatology, 2022, 22(2): 248-257.
[37]
Peng C, Tu G, Yu L, et al. Murine Chronic Pancreatitis Model Induced by Partial Ligation of the Pancreatic Duct Encapsulates the Profile of Macrophage in Human Chronic Pancreatitis[J]. Front Immunol, 2022, 13: 840887.
[38]
Xue J, Sharma V, Hsieh MH, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis[J]. Nat Commun, 2015, 6: 7158.
[39]
Habtezion A, Inflammation in acute and chronic pancreatitis[J]. Curr Opin Gastroenterol, 2015, 31(5): 395-399.
[40]
Pan Z, Van den Bossche JL, Rodriguez-Aznar E, et al. Pancreatic acinar cell fate relies on system x(C)(-) to prevent ferroptosis during stress[J]. Cell Death Dis, 2023, 14(8): 536.
[41]
Zheng M, Li H, Gao Y, et al. Vitamin D(3) analogue calcipotriol inhibits the profibrotic effects of transforming growth factor- β1 on pancreatic stellate cells[J]. Eur J Pharmacol, 2023, 957: 176000.
[42]
Qu F, Geng R, Liu Y, et al. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment[J]. Theranostics, 2022, 12(7): 3372-3406.
[43]
Chen D, Lei C, Liu W, et al. Reduction-responsive nucleic acid nanocarrier-mediated miR-22 inhibition of PI3K/AKT pathway for the treatment of patient-derived tumor xenograft osteosarcoma[J]. Bioact Mater, 2023, 28: 376-385.
[44]
Mo L, Liang D, Qin R, et al. Three-Dimensional CHA-HCR System Using DNA Nanospheres for Sensitive and Rapid Imaging of miRNA in Live Cells and Tissues[J]. Anal Chem, 2023, 95(31): 11777-11784.
[45]
Zhou Y, Yang M, Yan X, et al. Oral Nanotherapeutics of Andrographolide/Carbon Monoxide Donor for Synergistically Anti-inflammatory and Pro-resolving Treatment of Ulcerative Colitis[J]. ACS Appl Mater Interfaces, 2023, 15(30): 36061-36075.
[46]
Huang J, Huang H, Wang Y, et al. Retinol-binding protein-hijacking nanopolyplex delivering siRNA to cytoplasm of hepatic stellate cell for liver fibrosis alleviation[J]. Biomaterials, 2023, 299: 122134.
[47]
Mu W, Chu Q, Liu Y, et al. A Review on Nano-Based Drug Delivery System for Cancer Chemoimmunotherapy[J]. Nanomicro Lett, 2020, 12(1): 142.
[48]
Wang F, Li C, Cheng J, et al. Recent Advances on Inorganic Nanoparticle-Based Cancer Therapeutic Agents[J]. Int J Environ Res Public Health, 2016, 13(12): 1182.
[49]
Khurana A, Anchi P, Allawadhi P, et al. Superoxide dismutase mimetic nanoceria restrains cerulein induced acute pancreatitis[J]. Nanomedicine(Lond), 2019, 14(14): 1805-1825.
[50]
Khurana A, Saifi MA, Godugu C, Yttrium Oxide Nanoparticles Attenuate L-Arginine Induced Chronic Pancreatitis[J]. Biol Trace Elem Res, 2023, 201(7): 3404-3417.
[51]
Khurana A, Saifi MA, Godugu C, Nanoceria Ameliorates Fibrosis, Inflammation, and Cellular Stress in Experimental Chronic Pancreatitis[J]. ACS Biomater Sci Eng, 2023, 9(2): 1030-1042.
[52]
de Oliveira MA, Araújo RS, Mosqueira VCF. PEGylated and functionalized polylactide-based nanocapsules: An overview[J]. Int J Pharm, 2023, 636: 122760.
[53]
Wang F, Deng Y, Yu L, et al. A Macrophage Membrane-Polymer Hybrid Biomimetic Nanoplatform for Therapeutic Delivery of Somatostatin Peptide to Chronic Pancreatitis[J]. Pharmaceutics, 2022, 14(11): 2341.
[54]
Feng WM, Guo HH, Xue T, et al. Anti-inflammation and anti-fibrosis with PEGylated, apigenin loaded PLGA nanoparticles in chronic pancreatitis disease[J]. Rsc Adv, 2015, 5(102): 83628-83635.
[55]
Wassmann S, Laufs U, Bäumer A T, et al. HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species[J]. Hypertension, 2001, 37(6): 1450-1457.
[56]
Weitz-Schmidt G. Statins as anti-inflammatory agents[J]. Trends Pharmacol Sci, 2002, 23(10): 482-6.
[57]
Bang UC, Watanabe T, Bendtsen F, The relationship between the use of statins and mortality, severity, and pancreatic cancer in Danish patients with chronic pancreatitis[J]. Eur J Gastroenterol Hepatol, 2018, 30(3): 346-351.
[58]
Mansouri A, Reiner Ž, Ruscica M, et al. Antioxidant Effects of Statins by Modulating Nrf2 and Nrf2/HO-1 Signaling in Different Diseases[J]. J Clin Med, 2022, 11(5): 1313.
[59]
Kojayan GG, Alizadeh RF, Li S, et al. Reducing Pancreatic Fibrosis Using Antioxidant Therapy Targeting Nrf2 Antioxidant Pathway: A Possible Treatment for Chronic Pancreatitis[J]. Pancreas, 2019, 48(10): 1259-1262.
[60]
Wei L, Yamamoto M, Harada M, et al. Treatment with pravastatin attenuates progression of chronic pancreatitis in rat[J]. Lab Invest, 2011, 91(6): 872-884.
[61]
Schwalfenberg GK. N-Acetylcysteine: A Review of Clinical Usefulness(an Old Drug with New Tricks)[J]. J Nutr Metab, 2021, 2021: 9949453.
[62]
Zhang J, Bai J, Zhou Q, et al. Glutathione prevents high glucose-induced pancreatic fibrosis by suppressing pancreatic stellate cell activation via the ROS/TGFβ/SMAD pathway[J]. Cell Death Dis, 2022, 13(5): 440.
[63]
Minati MA, Libert M, Dahou H, et al. N-Acetylcysteine Reduces the Pro-Oxidant and Inflammatory Responses during Pancreatitis and Pancreas Tumorigenesis[J]. Antioxidants(Basel), 2021, 10(7): 1107.
[64]
Asaumi H, Watanabe S, Taguchi M, et al. Externally applied pressure activates pancreatic stellate cells through the generation of intracellular reactive oxygen species[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 293(5): G972-978.
[65]
Raghu G, Berk M, Campochiaro PA, et al. The Multifaceted Therapeutic Role of N-Acetylcysteine(NAC) in Disorders Characterized by Oxidative Stress[J]. Curr Neuropharmacol, 2021, 19(8): 1202-1224.
[66]
Wei Q, Kong N, Liu X, et al. Pirfenidone attenuates synovial fibrosis and postpones the progression of osteoarthritis by anti-fibrotic and anti-inflammatory properties in vivo and in vitro[J]. J Transl Med, 2021, 19(1): 157.
[67]
Tang Q, Xing C, Li M, et al. Pirfenidone ameliorates pulmonary inflammation and fibrosis in a rat silicosis model by inhibiting macrophage polarization and JAK2/STAT3 signaling pathways[J]. Ecotoxicol Environ Saf, 2022. 244: 114066.
[68]
Al-Bayati MA, Xie Y, Mohr FC, et al. Effect of pirfenidone against vanadate-induced kidney fibrosis in rats[J]. Biochem Pharmacol, 2002. 64(3): 517-525.
[69]
Palathingal Bava E, George J, Iyer S, et al. Pirfenidone ameliorates chronic pancreatitis in mouse models through immune and cytokine modulation[J]. Pancreatology, 2022, 22(5): 553-563.
[70]
El-Kashef DH, Shaaban AA, El-Agamy DS, Protective role of pirfenidone against experimentally-induced pancreatitis[J]. Pharmacol Rep, 2019, 71(5): 774-781.
[71]
Weissman IL, Anderson DJ, Gage F, Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations [J]. Annu Rev Cell Dev Biol, 2001, 17: 387-403.
[72]
Burr A, Parekkadan B. Kinetics of MSC-based enzyme therapy for immunoregulation[J]. J Transl Med, 2019. 17(1): 263.
[73]
Yi T, Song S U, Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications[J]. Arch Pharm Res, 2012. 35(2): 213-221.
[74]
Zhou CH, Li ML, Qin AL, et al. Reduction of fibrosis in dibutyltin dichloride-induced chronic pancreatitis using rat umbilical mesenchymal stem cells from Wharton's jelly[J]. Pancreas, 2013, 42(8): 1291-1302.
[75]
Taha HS, Moustafa EM, Moawed FS, et al. Curative role of mesenchymal stromal cells in chronic pancreatitis: Modulation of MAPK and TGF-β1/SMAD factors[J]. Int J Immunopathol Pharmacol, 2021, 35: 20587384211054036.
[76]
Xu X, Yu H, Sun L, et al. Adipose-derived mesenchymal stem cells ameliorate dibutyltin dichloride-induced chronic pancreatitis by inhibiting the PI3K/AKT/mTOR signaling pathway[J]. Mol Med Rep, 2020, 21(4): 1833-1840.
[77]
Kong L, Xu X, Zhang H, et al. Human umbilical cord-derived mesenchymal stem cells improve chronic pancreatitis in rats via the AKT-mTOR-S6K1 signaling pathway[J]. Bioengineered, 2021, 12(1): 1986-1996.
[78]
Sun Z, Gou W, Kim DS, et al. Adipose Stem Cell Therapy Mitigates Chronic Pancreatitis via Differentiation into Acinar-like Cells in Mice[J]. Mol Ther, 2017, 25(11): 2490-2501.
[79]
Kawakubo K, Ohnishi S, Fujita H, et al. Effect of Fetal Membrane-Derived Mesenchymal Stem Cell Transplantation in Rats With Acute and Chronic Pancreatitis[J]. Pancreas, 2016, 45(5): 707-713.
[80]
Zhang G, Zhao X, Cai J, et al. XCHT alleviates the pancreatic fibrosis via VDR/NLRP3 signaling pathway in a mouse model of CP[J]. J Ethnopharmacol, 2023, 300: 115689.
[81]
Duan LF, Xu XF, Zhu LJ, et al. Dachaihu decoction ameliorates pancreatic fibrosis by inhibiting macrophage infiltration in chronic pancreatitis[J]. World J Gastroenterol, 2017, 23(40): 7242-7252.
[82]
Liang X, Han M, Zhang X, et al. Dahuang Danshen Decoction Inhibits Pancreatic Fibrosis by Regulating Oxidative Stress and Endoplasmic Reticulum Stress[J]. Evid Based Complement Alternat Med, 2021, 2021: 6629729.
[83]
Liu C, Li S, Zhang Q, et al. Emerging Role of Chinese Herbal Medicines in the Treatment of Pancreatic Fibrosis[J]. Am J Chin Med, 2019, 47(4): 709-726.
[84]
Choi JW, Shin JY, Zhou Z, et al. Stem bark of Fraxinus rhynchophylla ameliorates the severity of pancreatic fibrosis by regulating the TGF-β/Smad signaling pathway[J]. J Investig Med, 2022, 70(5): 1285-1292.
[85]
Bansod S, Doijad N, Godugu C. Berberine attenuates severity of chronic pancreatitis and fibrosis via AMPK-mediated inhibition of TGF-β1/Smad signaling and M2 polarization[J]. Toxicol Appl Pharmacol, 2020, 403: 115162.
[86]
Wang L J, He L, Hao L, et al. Isoliquiritigenin ameliorates caerulein-induced chronic pancreatitis by inhibiting the activation of PSCs and pancreatic infiltration of macrophages[J]. J Cell Mol Med, 2020, 24(17): 9667-9681.
[87]
Zhang G, Tang L, Liu H, et al. Psidium guajava Flavonoids Prevent NLRP3 Inflammasome Activation and Alleviate the Pancreatic Fibrosis in a Chronic Pancreatitis Mouse Model[J]. Am J Chin Med, 2021, 49(8): 2001-2015.
[88]
Choi JW, Jeong JH, Jo IJ, et al. Preventive Effects of Gardenia jasminoides on Cerulein-Induced Chronic Pancreatitis[J]. Am J Chin Med, 2020, 48(4): 987-1003.
[89]
Su SB, Xie MJ, Sawabu N, et al. Suppressive effect of herbal medicine saikokeishito on acinar cell apoptosis in rat spontaneous chronic pancreatitis[J]. Pancreatology, 2007, 7(1): 28-36.
[90]
Chen YX, Gao QY, Zou TH, et al. Berberine versus placebo for the prevention of recurrence of colorectal adenoma: a multicentre, double-blinded, randomised controlled study[J]. Lancet Gastroenterol Hepatol, 2020, 5(3): 267-275.
[91]
Kuratsune H, Umigai N, Takeno R, et al. Effect of crocetin from Gardenia jasminoides Ellis on sleep: a pilot study[J]. Phytomedicine, 2010, 17(11): 840-843.
[92]
Sharifi N, Amani R. Vitamin D supplementation and non-alcoholic fatty liver disease: A critical and systematic review of clinical trials[J]. Crit Rev Food Sci Nutr, 2019, 59(4): 693-703.
[93]
Reda D, Elshopakey GE, Albukhari TA, et al. Vitamin D3 alleviates nonalcoholic fatty liver disease in rats by inhibiting hepatic oxidative stress and inflammation via the SREBP-1-c/ PPARα-NF-κB/IR-S2 signaling pathway[J]. Front Pharmacol, 2023, 14: 1164512.
[94]
Klapdor S, Richter E, Klapdor R. Vitamin D status and per-oral vitamin D supplementation in patients suffering from chronic pancreatitis and pancreatic cancer disease[J]. Anticancer Res, 2012, 32(5): 1991-1998.
[95]
Wallbaum P, Rohde S, Ehlers L, et al. Antifibrogenic effects of vitamin D derivatives on mouse pancreatic stellate cells[J]. World J Gastroenterol, 2018, 24(2): 170-178.
[96]
Bläuer M, Sand J, Laukkarinen J. Physiological and clinically attainable concentrations of 1, 25-dihydroxyvitamin D3 suppress proliferation and extracellular matrix protein expression in mouse pancreatic stellate cells[J]. Pancreatology, 2015, 15(4): 366-71.
[97]
Zaafan MA, Abdelhamid AM. Dasatinib ameliorates thioacetamide-induced liver fibrosis: modulation of miR-378 and miR-17 and their linked Wnt/β-catenin and TGF-β/smads pathways[J]. J Enzyme Inhib Med Chem, 2022, 37(1): 118-124.
[98]
Cruz FF, Horta LF, Maia Lde A, et al. Dasatinib Reduces Lung Inflammation and Fibrosis in Acute Experimental Silicosis[J]. PLoS One, 2016, 11(1): e0147005.
[99]
Mukhopadhyay P, Horváth B, Rajesh M, et al. PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis[J]. J Hepatol, 2017, 66(3): 589-600.
[100]
Zeng XP, Wang LJ, Guo HL, et al. Dasatinib ameliorates chronic pancreatitis induced by caerulein via anti-fibrotic and anti-inflammatory mechanism[J]. Pharmacol Res, 2019, 147: 104357.
[101]
El-Hamoly T, Hajnády Z, Nagy-Pénzes M, et al. Poly(ADP-Ribose) Polymerase 1 Promotes Inflammation and Fibrosis in a Mouse Model of Chronic Pancreatitis[J]. Int J Mol Sci, 2021, 22(7): 3593.
[102]
Bansod S, Saifi MA, Godugu C. Inhibition of discoidin domain receptors by imatinib prevented pancreatic fibrosis demonstrated in experimental chronic pancreatitis model[J]. Sci Rep, 2021, 11(1): 12894.
[103]
Nambiar A, Kellogg D, 3rd, Justice J, et al. Senolytics dasatinib and quercetin in idiopathic pulmonary fibrosis: results of a phase I, single-blind, single-center, randomized, placebo-controlled pilot trial on feasibility and tolerability[J]. EBioMedicine, 2023, 90: 104481.
[104]
Spiera RF, Gordon JK, Mersten JN, et al. Imatinib mesylate(Gleevec) in the treatment of diffuse cutaneous systemic sclerosis: results of a 1-year, phase IIa, single-arm, open-label clinical trial[J]. Ann Rheum Dis, 2011, 70(6): 1003-1009.
[105]
Otsuki M, Pathophysiological role of cholecystokinin in humans[J]. J Gastroenterol Hepatol, 2000, 15 Suppl: D71-83.
[106]
Chandra R, Liddle RA. Cholecystokinin[J]. Curr Opin Endocrinol Diabetes Obes, 2007, 14(1): 63-67.
[107]
Berna MJ, Seiz O, Nast JF, et al. CCK1 and CCK2 receptors are expressed on pancreatic stellate cells and induce collagen production [J]. J Biol Chem, 2010, 285(50): 38905-38914.
[108]
Shiratori K, Takeuchi T, Satake K, et al. Clinical evaluation of oral administration of a cholecystokinin-A receptor antagonist (loxiglumide) to patients with acute, painful attacks of chronic pancreatitis: a multicenter dose-response study in Japan[J]. Pancreas, 2002, 25(1): e1-5.
[109]
Smith JP, Cooper TK, McGovern CO, et al. Cholecystokinin receptor antagonist halts progression of pancreatic cancer precursor lesions and fibrosis in mice[J]. Pancreas, 2014, 43(7): 1050-1059.
[110]
Nadella S, Ciofoaia V, Cao H, et al. Cholecystokinin Receptor Antagonist Therapy Decreases Inflammation and Fibrosis in Chronic Pancreatitis[J]. Dig Dis Sci, 2020, 65(5): 1376-1384.
[1] 王帆, 余辉, 谢佳乐, 许焕焕, 马瑞, 依日夏提·艾海提, 许珂, 许鹏. 成纤维样滑膜细胞在类风湿关节炎发病机制中的作用[J]. 中华关节外科杂志(电子版), 2024, 18(02): 225-230.
[2] 冯芳, 陈宇, 杨静, 满珂, 蔡红燕, 李群. ω-3鱼油脂肪乳注射液在脓毒症患者中的应用:前瞻性、随机对照、先导试验[J]. 中华危重症医学杂志(电子版), 2024, 17(02): 136-139.
[3] 杨琳, 尹如铁. 外阴白色病变病因研究及治疗现状[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 157-165.
[4] 刘炯, 彭乐, 马伟, 江斌. 鞘外解剖肝蒂技术治疗肝内胆管细胞癌的疗效评估[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 373-376.
[5] 王东阳, 林琳, 娄熙彬. SII对局部进展期胃癌nCRT+腹腔镜胃癌根治术后并发症及预后的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 315-318.
[6] 刘盾, 潘晟. 不同入路腹腔镜袖状胃切除术用于肥胖症合并2型糖尿病的效果[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 150-154.
[7] 周慧宇, 吕定阳, 双卫兵. 联合系统性免疫炎症指数和预后营养指数预测腹腔镜肾切除术后肾癌患者的预后[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 225-231.
[8] 潘兴赫, 董翔, 杨海洋, 张雪斌, 甘卫东. 超选择性前列腺动脉栓塞治疗伴急性尿潴留的高危高龄前列腺增生[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 237-242.
[9] 王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.
[10] 张云飞, 吐尔洪江·吐逊. NLRP3炎症小体及其在肝脏缺血-再灌注损伤中的作用机制[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 398-403.
[11] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[12] 周慧杰, 张云龙. 基于数据挖掘技术分析肾纤维化的中医病机与治法[J]. 中华肾病研究电子杂志, 2024, 13(03): 152-160.
[13] 王静, 丁红. 益肾化湿颗粒对慢性肾衰竭大鼠肾组织转化生长因子-β1、α-平滑肌肌动蛋白表达的影响[J]. 中华肾病研究电子杂志, 2024, 13(03): 161-165.
[14] 戴伟川, 郭协力, 方仲宁, 蔡文华, 洪天生, 田夏阳. 显微镜下周围神经松解术治疗腰椎间盘突出症术后残余神经症状的疗效分析[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 84-90.
[15] 江浩, 余宏圣, 杨碧兰, 阿布都克尤木·斯马依, 吴斌, 杨逸冬. 基于列线图模型对慢性乙型肝炎合并肝脏脂肪变性患者并发晚期肝纤维化的临床预测[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 114-120.
阅读次数
全文


摘要