切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2021, Vol. 11 ›› Issue (01) : 20 -23. doi: 10.3877/cma.j.issn.2095-2015.2021.01.004

所属专题: 文献

全民健康助力全面小康专栏

人工智能助力健康中国建设
姚定康1, 朱樑1,()   
  1. 1. 200003 上海,海军军医大学附属长征医院内科教研室
  • 收稿日期:2020-08-15 出版日期:2021-02-01
  • 通信作者: 朱樑

Artificial intelligence promotes health construction in China

Dingkang Yao1, Liang Zhu1,()   

  1. 1. Department of Internal Medicine, Changzheng Hospital, Naval Military Medical University, Shanghai 200003, China
  • Received:2020-08-15 Published:2021-02-01
  • Corresponding author: Liang Zhu
  • About author:
    Corresponding author: Zhu Liang, Email:
引用本文:

姚定康, 朱樑. 人工智能助力健康中国建设[J]. 中华消化病与影像杂志(电子版), 2021, 11(01): 20-23.

Dingkang Yao, Liang Zhu. Artificial intelligence promotes health construction in China[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2021, 11(01): 20-23.

人工智能(AI)近年来发展迅猛,已经广泛应用于医疗健康领域。本文针对人工智能在新冠肺炎防控救治、肺癌及乳腺癌筛查、消化内镜图像辅助诊断等健康领域的应用进行阐述,提出人工智能助力健康中国的设想,并进行深入讨论。

Artificial intelligence(AI)has been developing rapidly in recent years.It has been widely used in the field of healthcare.This paper elaborates on the application of AI in health fields such as prevention, control and treatment of new coronavirus pneumonia(COVID-19), lung and breast cancer screening, and endoscopic image-assisted diagnosis, and puts forward the idea of AI empowering health construction in China and discusses it in depth.

1
Beam AL, Kohane IS.Big data and machine learning in health care[J].JAMA,2018,319(3): 1317-1318.
2
Rau CS, Wu SC, Chuang JF,et al.Machine learning models of survival prediction in trauma patients[J].J Clin Med,2019,8(3): 799.
3
宗淙.人工智能技术在疫情防控中的应用及发展态势研究[J].封面故事,2020,2: 30-35.
4
Wenya LB, Ahmed H, Matthew B.S,et al.Artificial intelligence in cancer imaging:Clinical challenges and applications[J].CA Cancer J Clin,2019,69(2): 127-157.
5
National Lung Screening Trial Research Team, Aberle DR, Adams AM,et al.Reduced lung-cancer mortality with low-dose computed tomographic screening[J].N Engl J Med,2011,365(5): 395-409.
6
王冠华,燕俊竹,张林.人工智能技术对肺癌早期不同密度肺结节的诊断能力探究[J].影像研究与医学应用,2020,14(4): 145-146.
7
杨锋,樊军,田周俊逸,等.人群肺亚实性结节C T筛查及人工智能应用研究初探[J].中华胸心血管外科杂志,2020,36(3): 145-150.
8
Spanhol FA, Oliverria LS, Petitjean C,et al.Breast Cancer Classification in Histopathological Images using Convolutional Neural Network[J].International Joint Conference on Neural Networks,2016,2560-2567.
9
梁翠霞,李明强,边兆英,等.基于深度学习特征的乳腺肿瘤分类模型评估[J].南方医科大学学报,2019,39(1): 89-92.
10
Daniela CL, Mihaela FA, Alexandra CF.et al.The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions:Present and Future[J].Medicina, 2020,56(7): 364.
11
Horie Y, Yoshio T, Aoyama K,et al.Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks[J].Gastrointest Endosc,2019,89(1): 2532-2538.
12
Zhu Y, Wang QC, Xu MD,et al.Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy[J].Gastrointest Endosc,2019,89(4): 806-815.
13
Wang P, Xiao X, Glissen Brown J R,et al.Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy[J].Nature Biomedical Engineering,2018,2(10): 741-748.
14
张雅琼,栗凤霞.人工智能技术在消化内镜领域的研究现状[J].中国现代医学杂志,2020,30(8): 62-66.
15
Gulshan V, Peng L, Coram M,et al.Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J].JAMA,2016,316(22): 2402-2410.
16
Esteva A, Kuprel B, Novoa RA,et al.Dermatologist-level classification of skin cancer with deep neural networks[J].Nature,2017,542(7639): 115-118.
17
Li XC, Zhang S, Zhang Q,et al.Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images:a retrospective,multicohort,diagnostic study[J].Lancet Oncol,2019,20(2): 193-201.
18
Liang H, Tsui BY, Ni H,et al.Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence[J].Nature Medicine,2019,25(3): 433-438.
19
Gutierrez Guillermo.Artificial Intelligence in the Intensive Care Unit[J].Crit Care, 2020,24: 101.
20
陈鸣,崔巍,陈瑜,等."检验医学"遇上"人工智能" [J].国际检验医学杂志,2020,41(5): 513-517.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 黄珈瑶, 林满霞, 田文硕, 何璟怡, 赖佳明, 谢晓燕, 龙海怡. 健康成人胰腺剪切波弹性成像的可行性和测量值及其影响因素[J]. 中华医学超声杂志(电子版), 2023, 20(05): 524-529.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 李锐颖, 危望, 王达志, 时志斌. 深度学习技术在膝关节疾病中的研究现状与展望[J]. 中华关节外科杂志(电子版), 2023, 17(05): 722-725.
[5] 杨依琴, 何敏仪, 杜桂菊, 刘欣, 詹文英. 膝关节置换术后康复应用基于保护动机理论的健康教育[J]. 中华关节外科杂志(电子版), 2023, 17(05): 741-746.
[6] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[7] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[8] 胡博文, 戴英波. 泌尿外科机器人手术新趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 418-421.
[9] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[10] 闵筱兰, 周洁超, 陈振添. 健康管理联合心理干预用于腹腔镜腹股沟疝手术患儿术后效果观察[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 657-661.
[11] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[12] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[13] 郭震天, 张宗明, 赵月, 刘立民, 张翀, 刘卓, 齐晖, 田坤. 机器学习算法预测老年急性胆囊炎术后住院时间探索[J]. 中华临床医师杂志(电子版), 2023, 17(9): 955-961.
[14] 高红琴, 陈晨, 陆瑞科, 王小雨, 张敏, 李少华, 郝梨岚, 黄新程, 关凌耀, 张韵红. 外阴阴道假丝酵母菌病对女性阴道-宫颈菌群的影响研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 720-725.
[15] 王俊杰, 尹晓亮, 刘二腾, 陆军, 祁鹏, 胡深, 杨希孟, 陈鲲鹏, 张东, 王大明. 机器学习对预测颈内动脉非急性闭塞患者血管内再通术成功的潜在价值[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 464-470.
阅读次数
全文


摘要