切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2022, Vol. 12 ›› Issue (04) : 241 -245. doi: 10.3877/cma.j.issn.2095-2015.2022.04.011

综述

能谱计算机体层成像在肝脏疾病影像诊断中的应用研究进展
许莹1, 叶枫1, 赵心明1,()   
  1. 1. 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院影像诊断科
  • 收稿日期:2021-12-10 出版日期:2022-08-01
  • 通信作者: 赵心明
  • 基金资助:
    国家自然科学基金(81971589)

Research progress of application of dual-energy computed tomography in radiological diagnosis of liver diseases

Ying Xu1, Feng Ye1, Xinming Zhao1,()   

  1. 1. Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
  • Received:2021-12-10 Published:2022-08-01
  • Corresponding author: Xinming Zhao
引用本文:

许莹, 叶枫, 赵心明. 能谱计算机体层成像在肝脏疾病影像诊断中的应用研究进展[J]. 中华消化病与影像杂志(电子版), 2022, 12(04): 241-245.

Ying Xu, Feng Ye, Xinming Zhao. Research progress of application of dual-energy computed tomography in radiological diagnosis of liver diseases[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2022, 12(04): 241-245.

能谱计算机体层成像(CT)在过去10年中取得了长足发展,其在多种疾病的诊断中具有重要的应用价值。目前对于能谱CT是否能作为常规扫描尚存在争议。能谱CT对于小肝癌的准确检测、微血管浸润的评估、乏血供转移瘤的检测、肝硬化与肝脏纤维化定量评估、肝脏脂肪成分定量评估具有重要价值,同时提高了肝囊肿及不同肿瘤间、门静脉癌栓及血栓间的鉴别诊断效能。对于肝脏肿瘤局部治疗及系统治疗后的疗效评估及疗后复发方面较普通CT具有显著优势。本文主要围绕肝脏疾病,从能谱辐射剂量与图像质量、肝脏疾病诊断、肝脏疾病鉴别诊断、肝脏肿瘤疗效评估这4个方面,对能谱CT在肝脏疾病诊断中的应用研究进展进行综述。

Dual-energy computed tomography (CT) has made great progress in the past decade, which has significant application value in the diagnosis of a variety of diseases. Currently, it is controversial about whether dual-energy CT can be used as routine scanning. Dual-energy CT is of great value in the accurate detection of small liver cancer, the evaluation of microvascular invasion, the detection of hypo-vascular metastases, the quantitative evaluation of liver cirrhosis and liver fibrosis, and the quantitative evaluation of liver fat composition. Meanwhile, it improves the differential diagnosis efficiency of liver cyst and different tumors, portal vein cancer thrombus and thrombosis. Compared with conventional CT, dual-energy CT has significant advantages in the efficacy evaluation and post-treatment recurrence prediction of liver tumors after local and systematic therapies. This review provides a summary of the latest research progress of dual-energy CT in the imaging diagnosis of liver diseases from four aspects: radiation dose and image quality, diagnosis of liver diseases, differential diagnosis of liver diseases, curative effect evaluation of liver tumors.

1
Goo HW, Goo JM. Dual-Energy CT: New Horizon in Medical Imaging [J]. Korean J Radiol, 2017, 18(4): 555-569.
2
Sellerer T, Noel PB, Patino M, et al. Dual-energy CT: a phantom comparison of different platforms for abdominal imaging [J]. Eur Radiol, 2018, 28(7): 2745-2755.
3
McCollough CH, Leng S, Yu L, et al. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications [J]. Radiology, 2015, 276(3): 637-653.
4
Li W, Li A, Wang B, et al. Automatic spectral imaging protocol and iterative reconstruction for radiation dose reduction in typical hepatic hemangioma computed tomography with reduced iodine load: a preliminary study [J]. Br J Radiol, 2018, 91(1087): 20170978.
5
Durieux P, Gevenois PA, Muylem AV, et al. Abdominal Attenuation Values on Virtual and True Unenhanced Images Obtained With Third-Generation Dual-Source Dual-Energy CT [J]. AJR Am J Roentgenol, 2018, 210(5): 1042-1058.
6
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
7
Roayaie S, Blume IN, Thung SN, et al. A system of classifying microvascular invasion to predict outcome after resection in patients with hepatocellular carcinoma [J]. Gastroenterology, 2009, 137(3): 850-855.
8
Shah SA, Cleary SP, Wei AC, et al. Recurrence after liver resection for hepatocellular carcinoma: risk factors, treatment, and outcomes [J]. Surgery, 2007, 141(3): 330-339.
9
Yang CB, Zhang S, Jia YJ, et al. Dual energy spectral CT imaging for the evaluation of small hepatocellular carcinoma microvascular invasion [J]. Eur J Radiol, 2017, 95: 222-227.
10
De Cecco CN, Caruso D, Schoepf UJ, et al. A noise-optimized virtual monoenergetic reconstruction algorithm improves the diagnostic accuracy of late hepatic arterial phase dual-energy CT for the detection of hypervascular liver lesions [J]. Eur Radiol, 2018, 28(8): 3393-3404.
11
Matsuda M, Tsuda T, Kido T, et al. Dual-Energy Computed Tomography in Patients With Small Hepatocellular Carcinoma: Utility of Noise-Reduced Monoenergetic Images for the Evaluation of Washout and Image Quality in the Equilibrium Phase [J]. J Comput Assist Tomogr, 2018, 42(6): 937-943.
12
Yoon JH, Chang W, Lee ES, et al. Double Low-Dose Dual-Energy Liver CT in Patients at High-Risk of HCC: A Prospective, Randomized, Single-Center Study [J]. Invest Radiol, 2020, 55(6): 340-348.
13
Caruso D, De Cecco CN, Schoepf UJ, et al. Can dual-energy computed tomography improve visualization of hypoenhancing liver lesions in portal venous phase? Assessment of advanced image-based virtual monoenergetic images [J]. Clin Imaging, 2017, 41: 118-124.
14
Altenbernd J, Forsting M, Lauenstein T, et al. Improved Image Quality and Detectability of Hypovascular Liver Metastases on DECT with Different Adjusted Window Settings [J]. Rofo, 2017, 189(3): 228-232.
15
Lenga L, Lange M, Arendt CT, et al. Can Dual-energy CT-based Virtual Monoenergetic Imaging Improve the Assessment of Hypodense Liver Metastases in Patients With Hepatic Steatosis? [J]. Acad Radiol, 2021, 28(6): 769-777.
16
Schuppan D, Afdhal NH. Liver cirrhosis [J]. Lancet, 2008, 371(9615): 838-851.
17
Guo SL, Su LN, Zhai YN, et al. The clinical value of hepatic extracellular volume fraction using routine multiphasic contrast-enhanced liver CT for staging liver fibrosis [J]. Clin Radiol, 2017, 72(3): 242-246.
18
Bandula S, Punwani S, Rosenberg WM, et al. Equilibrium contrast-enhanced CT imaging to evaluate hepatic fibrosis: initial validation by comparison with histopathologic sampling [J]. Radiology, 2015, 275(1): 136-143.
19
Elbanna KY, Mansoori B, Mileto A, et al. Dual-energy CT in diffuse liver disease: is there a role? [J]. Abdom Radiol (NY), 2020, 45(11): 3413-3424.
20
Bottari A, Silipigni S, Carerj ML, et al. Dual-source dual-energy CT in the evaluation of hepatic fractional extracellular space in cirrhosis [J]. Radiol Med, 2020, 125(1): 7-14.
21
Sofue K, Tsurusaki M, Mileto A, et al. Dual-energy computed tomography for non-invasive staging of liver fibrosis: Accuracy of iodine density measurements from contrast-enhanced data [J]. Hepatol Res, 2018, 48(12): 1008-1019.
22
Bak S, Kim JE, Bae K, et al. Quantification of liver extracellular volume using dual-energy CT: utility for prediction of liver-related events in cirrhosis [J]. Eur Radiol, 2020, 30(10): 5317-5326.
23
Goceri E, Shah ZK, Layman R, et al. Quantification of liver fat: A comprehensive review [J]. Comput Biol Med, 2016, 71: 174-189.
24
Xu MM, Brown RS. Liver transplantation for the referring physician [J]. Clin Liver Dis, 2015, 19(1): 135-153.
25
Abdalla EK, Vauthey JN. Steatosis as a risk factor in liver surgery [J]. Ann Surg, 2007, 246(2): 340-341.
26
Brunt EM, Janney CG, Di Bisceglie AM, et al. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions [J]. Am J Gastroenterol, 1999, 94(9): 2467-2474.
27
Kramer H, Pickhardt PJ, Kliewer MA, et al. Accuracy of Liver Fat Quantification With Advanced CT, MRI, and Ultrasound Techniques: Prospective Comparison With MR Spectroscopy [J]. AJR Am J Roentgenol, 2017, 208(1): 92-100.
28
Hyodo T, Yada N, Hori M, et al. Multimaterial Decomposition Algorithm for the Quantification of Liver Fat Content by Using Fast-Kilovolt-Peak Switching Dual-Energy CT: Clinical Evaluation [J]. Radiology, 2017, 283(1): 108-118.
29
Artz NS, Hines CD, Brunner ST, et al. Quantification of hepatic steatosis with dual-energy computed tomography: comparison with tissue reference standards and quantitative magnetic resonance imaging in the ob/ob mouse [J]. Invest Radiol, 2012, 47(10): 603-610.
30
Patel BN, Kumbla RA, Berland LL, et al. Material density hepatic steatosis quantification on intravenous contrast-enhanced rapid kilovolt (peak)-switching single-source dual-energy computed tomography [J]. J Comput Assist Tomogr, 2013, 37(6): 904-910.
31
Hur BY, Lee JM, Hyunsik W, et al. Quantification of the fat fraction in the liver using dual-energy computed tomography and multimaterial decomposition [J]. J Comput Assist Tomogr, 2014, 38(6): 845-852.
32
Wang B, Gao Z, Zou Q, et al. Quantitative diagnosis of fatty liver with dual-energy CT. An experimental study in rabbits [J]. Acta Radiol, 2003, 44(1): 92-97.
33
Guo Z, Blake GM, Li K, et al. Liver Fat Content Measurement with Quantitative CT Validated against MRI Proton Density Fat Fraction: A Prospective Study of 400 Healthy Volunteers [J]. Radiology, 2020, 294(1): 89-97.
34
Wang Q, Shi G, Qi X, et al. Quantitative analysis of the dual-energy CT virtual spectral curve for focal liver lesions characterization [J]. Eur J Radiol, 2014, 83(10): 1759-1764.
35
Ascenti G, Sofia C, Mazziotti S, et al. Dual-energy CT with iodine quantification in distinguishing between bland and neoplastic portal vein thrombosis in patients with hepatocellular carcinoma [J]. Clin Radiol, 2016, 71(9): 938. e1-e9.
36
Dai X, Schlemmer HP, Schmidt B, et al. Quantitative therapy response assessment by volumetric iodine-uptake measurement: initial experience in patients with advanced hepatocellular carcinoma treated with sorafenib [J]. Eur J Radiol, 2013, 82(2): 327-334.
37
Altenbernd J, Heusner TA, Ringelstein A, et al. Dual-energy-CT of hypervascular liver lesions in patients with HCC: investigation of image quality and sensitivity [J]. Eur Radiol, 2011, 21(4): 738-743.
38
Lee JA, Jeong WK, Kim Y, et al. Dual-energy CT to detect recurrent HCC after TACE: initial experience of color-coded iodine CT imaging [J]. Eur J Radiol, 2013, 82(4): 569-576.
39
Lee SH, Lee JM, Kim KW, et al. Dual-energy computed tomography to assess tumor response to hepatic radiofrequency ablation: potential diagnostic value of virtual noncontrast images and iodine maps [J]. Invest Radiol, 2011, 46(2): 77-84.
40
Greffier J, Frandon J, Hamard A, et al. Impact of iterative reconstructions on image quality and detectability of focal liver lesions in low-energy monochromatic images [J]. Phys Med, 2020, 77: 36-42.
41
Hanson GJ, Michalak GJ, Childs R, et al. Low kV versus dual-energy virtual monoenergetic CT imaging for proven liver lesions: what are the advantages and trade-offs in conspicuity and image quality? A pilot study [J]. Abdom Radiol (NY), 2018, 43(6): 1404-1412.
42
Hur S, Lee JM, Kim SJ, et al. 80-kVp CT using Iterative Reconstruction in Image Space algorithm for the detection of hypervascular hepatocellular carcinoma: phantom and initial clinical experience [J]. Korean J Radiol, 2012, 13(2): 152-164.
43
Javadi S, Elsherif S, Bhosale P, et al. Quantitative attenuation accuracy of virtual non-enhanced imaging compared to that of true non-enhanced imaging on dual-source dual-energy CT [J]. Abdom Radiol (NY), 2020, 45(4): 1100-1109.
44
Kaltenbach B, Wichmann JL, Pfeifer S, et al. Iodine quantification to distinguish hepatic neuroendocrine tumor metastasis from hepatocellular carcinoma at dual-source dual-energy liver CT [J]. Eur J Radiol, 2018, 105: 20-24.
45
Kim JE, Kim HO, Bae K, et al. Differentiation of small intrahepatic mass-forming cholangiocarcinoma from small liver abscess by dual source dual-energy CT quantitative parameters [J]. Eur J Radiol, 2017, 92: 45-52.
46
Kim TM, Lee JM, Yoon JH, et al. Prediction of microvascular invasion of hepatocellular carcinoma: value of volumetric iodine quantification using preoperative dual-energy computed tomography [J]. Cancer Imaging, 2020, 20(1): 60.
[1] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[2] 樊逸隽, 杨枫, 王玮, 殷鹤英, 刘俊. 喉前淋巴结转移对甲状腺乳头状癌诊疗价值的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 306-310.
[3] 努尔艾力·排尔哈提, 展昭兴, 王令令, 张古田, 朱新胜. 肾癌合并静脉癌栓的诊疗进展[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(05): 459-462,471.
[4] 张林, 刘芳, 赵静, 刘勇, 周青. 远程康复在慢性阻塞性肺疾病患者肺康复中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 601-604.
[5] 李丹阳, 李满祥. 肠道菌群失调在肺动脉高压发病中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 432-434.
[6] 谯钰琪, 惠盼, 南岩东. DGKζ的结构功能及研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 117-120.
[7] 李青原, 冯同, 邱雪琴, 李万成. 迷迭香提取物防治肺纤维化研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 908-911.
[8] 王冠, 徐兴祥. 吸入药物在慢性阻塞性肺疾病和肺癌中的应用及进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 904-907.
[9] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[10] 黄军杰, 王烈, 赵虎, 夏印, 张再重. lncRNA作为ceRNA参与婴幼儿血管瘤发生发展机制的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 360-366.
[11] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[12] 栾恒钰, 赛晓勇. 创伤后应激障碍的治疗现状及研究进展[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 112-118.
[13] 黄文鹏, 邱永康, 杨琦, 宋乐乐, 陈钊, 范岩, 康磊. PET相关影像组学在肿瘤预后中的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 104-110.
[14] 吴一菡, 雷章, 卢宏达. MUC16/CA125在良恶性肿瘤诊治中的作用及其研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 591-595.
[15] 肖国中, 林宏城. 大便失禁治疗技术的研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(07): 696-700.
阅读次数
全文


摘要