[1] |
Bharucha AE, Lacy BE. Mechanisms, Evaluation, and Management of Chronic Constipation[J]. Gastroenterology, 2020, 158(5): 1232-1249. e3.
|
[2] |
Deb B, Sharma M, Fletcher JG, et al. Inadequate Rectal Pressure and Insufficient Relaxation and Abdominopelvic Coordination in Defecatory Disorders[J]. Gastroenterology, 2022, 162(4): 1111-1122. e2.
|
[3] |
De Marco P, Militello G, Tutino R, et al. The management of the slow transit constipation in the laparoscopic era[J]. G Chir, 2018, 34(5): 297-302.
|
[4] |
Jeong B, Sung TS, Jeon D, et al. Inhibition of TRPC4 channel activity in colonic myocytes by tricyclic antidepressants disrupts colonic motility causing constipation[J]. J Cell Mol Med, 2022 Oct;26(19): 4911-4923.
|
[5] |
Koh SD, Sanders KM. Propulsive colonic contractions are mediated by inhibition-driven poststimulus responses that originate in interstitial cells of Cajal[J]. Proc Natl Acad Sci U S A, 2022, 119(18): e2123020119.
|
[6] |
Schoemaker MH, Hageman JHJ, Ten Haaf D, et al. Prebiotic Galacto-Oligosaccharides Impact Stool Frequency and Fecal Microbiota in Self-Reported Constipated Adults: A Randomized Clinical Trial[J]. Nutrients, 2022, 14(2): 309.
|
[7] |
Geng Q, Zhang QE, Wang F, et al. Comparison of comorbid depression between irritable bowel syndrome and inflammatory bowel disease: A meta-analysis of comparative studies[J]. J Affect Disord, 2018, 237: 37-46.
|
[8] |
Jiang X, Liu Y, Zhang XY, et al. Intestinal Gastrin/CCKBR (Cholecystokinin B Receptor) Ameliorates Salt-Sensitive Hypertension by Inhibiting Intestinal Na+/H+ Exchanger 3 Activity Through a PKC(Protein Kinase C)-Mediated NHERF1 and NHERF2 Pathway [J]. Hypertension, 2022, 79(8): 1668-1679.
|
[9] |
Liu J, Gu L, Zhang M, et al. The Fecal Microbiota Transplantation: A Remarkable Clinical Therapy for Slow Transit Constipation in Future[J]. Front Cell Infect Microbiol, 2021, 11: 732474.
|
[10] |
Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(6): 338-351.
|
[11] |
Camilleri M. Gastrointestinal motility disorders in neurologic disease[J]. J Clin Invest, 2021, 131(4): e143771.
|
[12] |
Serra J, Pohl D, Azpiroz F, et al. European society of neurogastroenterology and motility guidelines on functional constipation in adults[J]. Neurogastroenterol Motil, 2020, 32(2): e13762.
|
[13] |
Mahurkar-Joshi S, Rankin CR, Videlock EJ, et al. The Colonic Mucosal MicroRNAs, MicroRNA-219a-5p, and MicroRNA-338-3p Are Downregulated in Irritable Bowel Syndrome and Are Associated With Barrier Function and MAPK Signaling[J]. Gastroenterology, 2021, 160(7): 2409-2422. e19.
|
[14] |
Le TL, Galmiche L, Levy J, et al. Dysregulation of the NRG1/ERBB pathway causes a developmental disorder with gastrointestinal dysmotility in humans[J]. J Clin Invest, 2021, 131(6): e145837.
|
[15] |
Bonora E, Bianco F, Cordeddu L, et al. Mutations in RAD21 disrupt regulation of APOB in patients with chronic intestinal pseudo-obstruction[J]. Gastroenterology, 2015, 148(4): 771-782. e11.
|
[16] |
Chen C, Ahn EH, Kang SS, et al. Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimer's disease mouse model[J]. Sci Adv, 2020, 6(31): eaba0466.
|
[17] |
Xia Y, Qadota H, Wang ZH, et al. Neuronal C/EBPβ/AEP pathway shortens life span via selective GABAnergic neuronal degeneration by FOXO repression[J]. Sci Adv, 2022, 8(13): eabj8658.
|
[18] |
Ahn EH, Kang SS, Liu X, et al. BDNF and Netrin-1 repression by C/EBPβ in the gut triggers Parkinson's disease pathologies, associated with constipation and motor dysfunctions[J]. Prog Neurobiol, 2021, 198: 101905.
|
[19] |
Verkhratsky A, Ho MS, Zorec R, et al. The Concept of Neuroglia[J]. Adv Exp Med Biol, 2019, 1175: 1-13.
|
[20] |
Ahmadzai MM, Seguella L, Gulbransen BD. Circuit-specific enteric glia regulate intestinal motor neurocircuits[J]. Proc Natl Acad Sci U S A, 2021, 118(40): e2025938118.
|
[21] |
Delvalle NM, Fried DE, Rivera-Lopez G, et al. Cholinergic activation of enteric glia is a physiological mechanism that contributes to the regulation of gastrointestinal motility[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 315(4): G473-G483.
|
[22] |
Grubišić V, McClain JL, Fried DE, et al. Enteric Glia Modulate Macrophage Phenotype and Visceral Sensitivity following Inflammation[J]. Cell Rep, 32(10): 108100.
|
[23] |
Chow AK, Grubišić V, Gulbransen BD. Enteric Glia Regulate Lymphocyte Activation via Autophagy-Mediated MHC-II Expression [J]. Cell Mol Gastroenterol Hepatol, 2021, 12(4): 1215-1237.
|
[24] |
Bhave S, Gade A, Kang M, et al. Connexin-purinergic signaling in enteric glia mediates the prolonged effect of morphine on constipation[J]. FASEB J, 2017, 31(6): 2649-2660.
|
[25] |
Ahmadzai MM, McClain JL, Dharshika C, et al. LPAR1 regulates enteric nervous system function through glial signaling and contributes to chronic intestinal pseudo-obstruction[J]. J Clin Invest, 2022, 132(4): e149464.
|
[26] |
Camilleri M, Ford AC, Mawe GM, et al. Chronic constipation[J]. Nat Rev Dis Primers, 2017, 3: 17095.
|
[27] |
Hayashi Y, Toyomasu Y, Saravanaperumal SA, et al. Hyperglycemia Increases Interstitial Cells of Cajal via MAPK1 and MAPK3 Signaling to ETV1 and KIT, Leading to Rapid Gastric Emptying[J]. Gastroenterology, 2017, 153(2): 521-535. e20.
|
[28] |
Wang H, Ren B, Pan J, et al. Effect of miR-129-3p on autophagy of interstitial cells of Cajal in slow transit constipation through SCF C-kit signaling pathway[J]. Acta Biochim Pol, 2022, 69(3): 579-586.
|
[29] |
Bellono NW, Bayrer JR, Leitch DB, et al. Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways[J]. Cell, 2017, 170(1): 185-198. e16.
|
[30] |
Israelyan N, Del Colle A, Li Z, et al. Effects of Serotonin and Slow-Release 5-Hydroxytryptophan on Gastrointestinal Motility in a Mouse Model of Depression[J]. Gastroenterology, 2019, 157(2): 507-521. e4.
|
[31] |
Ye L, Bae M, Cassilly CD, et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways[J]. Cell Host Microbe, 2021, 29(2): 179-196. e9.
|
[32] |
Yeh KM, Johansson O, Le H, et al. Cystic fibrosis transmembrane conductance regulator modulates enteric cholinergic activities and is abnormally expressed in the enteric ganglia of patients with slow transit constipation[J]. J Gastroenterol, 2019, 54(11): 994-1006.
|
[33] |
Wang YY, Lu RY, Shi J, et al. CircORC2 is involved in the pathogenesis of slow transit constipation via modulating the signalling of miR-19a and neurotensin/motilin[J]. J Cell Mol Med, 2021, 25(8): 3754-3764.
|
[34] |
Camilleri M, Bharucha AE. Behavioural and new pharmacological treatments for constipation: getting the balance right[J]. Gut, 2010, 59(9): 1288-1296.
|
[35] |
Cil O, Haggie PM, Tan JT, et al. SLC26A6-selective inhibitor identified in a small-molecule screen blocks fluid absorption in small intestine[J]. JCI Insight, 2021, 6(11): e147699.
|
[36] |
Mazzone A, Strege PR, Gibbons SJ, et al. microRNA overexpression in slow transit constipation leads to reduced NaV1. 5 current and altered smooth muscle contractility[J]. Gut, 2020, 69(5): 868-876.
|
[37] |
Feng J, Luo J, Yang P, Du J, et al. Piezo2 channel-Merkel cell signaling modulates the conversion of touch to itch[J]. Science, 2018, 360(6388): 530-533.
|
[38] |
Treichel AJ, Finholm I, Knutson KR, et al. Specialized Mechanosensory Epithelial Cells in Mouse Gut Intrinsic Tactile Sensitivity[J]. Gastroenterology, 2022, 162(2): 535-547. e13.
|
[39] |
Fujimura KE, Slusher NA, Cabana MD, et al. Role of the Gut Microbiota in Defining Human Health[J]. Expert Rev Anti Infect Ther, 2010, 8(4): 435-454.
|
[40] |
Obata Y, Pachnis V. The Effect of Microbiota and the Immune System on the Development and Organization of the Enteric Nervous System[J]. Gastroenterology, 2016, 151(5): 836-844.
|
[41] |
Schoeler M, Caesar R. Dietary Lipids, Gut Microbiota and Lipid Metabolism[J]. Reviews in endocrine & metabolic disorders, 2019, 20.
|
[42] |
Liang Y-X, Wen P, Wang Y, et al. The Constipation-Relieving Property of d-Tagatose by Modulating the Composition of Gut Microbiota[J]. Int J Mol Sci, 2019, 20: 5721.
|
[43] |
Fan Y, Xu C, Xie L, et al. Abnormal Bile Acid Metabolism Is an Important Feature of Gut Microbiota and Fecal Metabolites in Patients with Slow Transit Constipation[J]. Front Cell Infect Microbiol, 2022, 12: 956528.
|
[44] |
Huang J, Lin B, Zhang Y, et al. Bamboo Shavings Derived O-Acetylated Xylan Alleviates Loperamide-Induced Constipation in Mice[J]. Carbohydr Polym, 2022, 276: 118761.
|
[45] |
Ohkusa T, Koido S, Nishikawa Y, et al. Gut Microbiota and Chronic Constipation: A Review and Update[J]. Front Med-lausanne, 2019, 6: 19.
|
[46] |
Du Y, Li Y, Xu X, et al. Probiotics for Constipation and Gut Microbiota in Parkinson’s Disease[J]. Parkinsonism Relat Disord, 2022, 103: 92-97.
|
[47] |
Coyte K. Z, Rakoff-Nahoum S. Understanding Competition and Cooperation within the Mammalian Gut Microbiome[J]. Curr Biol, 2019, 29: R538-R544.
|
[48] |
Mazzone A, Farrugia G. Evolving Concepts in the Cellular Control of Gastrointestinal Motility: Neurogastroenterology and Enteric Sciences[J]. Gastroenterol Clin North Am, 2007, 36: 499-513, vii.
|
[49] |
Bhattarai Y, Jie S, Linden DR, et al. Bacterially Derived Tryptamine Increases Mucus Release by Activating a Host Receptor in a Mouse Model of Inflammatory Bowel Disease[J]. iScience, 2020, 23(12): 101798.
|
[50] |
Vicentini FA, Keenan CM, Wallace LE, et al. Intestinal Microbiota Shapes Gut Physiology and Regulates Enteric Neurons and Glia[J]. Microbiome, 2021, 9: 210.
|
[51] |
Ford AC, Moayyedi P, Lacy BE, et al. Task Force on the Management of Functional Bowel Disorders American College of Gastroenterology Monograph on the Management of Irritable Bowel Syndrome and Chronic Idiopathic Constipation[J]. Am J Gastroenterol, 2014, 109 Suppl 1, S2-26, quiz S27.
|
[52] |
Bharucha AE, Pemberton JH, Locke GR 3rd. American Gastroenterological Association Technical Review on Constipation[J]. Gastroenterology, 2013, 144(1): 218-238.
|
[53] |
Ford AC, Suares NC. Effect of Laxatives and Pharmacological Therapies in Chronic Idiopathic Constipation: Systematic Review and Meta-Analysis[J]. Gut, 2011, 60: 209-218.
|
[54] |
Kamm MA, Mueller-Lissner S, Wald A, et al. Oral Bisacodyl Is Effective and Well-Tolerated in Patients with Chronic Constipation[J]. Clin Gastroenterol Hepatol, 2011, 9: 577-583.
|
[55] |
Shah ED, Kim HM, Schoenfeld P. Efficacy and Tolerability of Guanylate Cyclase-C Agonists for Irritable Bowel Syndrome with Constipation and Chronic Idiopathic Constipation: A Systematic Review and Meta-Analysis[J]. Am J Gastroenterol, 2018, 113(3): 329-338.
|
[56] |
Huang L, Zhu Q, Qu X, et al. Microbial Treatment in Chronic Constipation[J]. Sci China Life Sci, 2018, 61(7): 744-752.
|
[57] |
Wilkinson-Smith V, Bharucha E, Emmanuel A, et al. When All Seems Lost: Management of Refractory Constipation-Surgery, Rectal Irrigation, Percutaneous Endoscopic Colostomy, and More[J]. Neurogastroenterol Motil, 2018, 30: e13352.
|
[58] |
Rao SSC, Benninga MA, Bharucha AE, et al. ANMS-ESNM Position Paper and Consensus Guidelines on Biofeedback Therapy for Anorectal Disorders[J]. Neurogastroenterol Motil, 2015, 27: 594-609.
|
[59] |
Falletto E, Brown S, Gagliardi G. Sacral Nerve Stimulation for Faecal Incontinence and Constipation in Adults[J]. Tech Coloproctol, 2018, 22(2): 125-127.
|