切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2024, Vol. 14 ›› Issue (01) : 82 -89. doi: 10.3877/cma.j.issn.2095-2015.2024.01.015

综述

慢传输型便秘分子机制研究及临床应用现状
黄涔1, 朱跃坤1,()   
  1. 1. 150001 哈尔滨医科大学附属第一医院结直肠外科
  • 收稿日期:2023-05-23 出版日期:2024-02-01
  • 通信作者: 朱跃坤
  • 基金资助:
    国家自然科学基金(82272696)

Current status of molecular mechanisms research and clinical applications in slow-transmission constipation

Cen Huang1, Yuekun Zhu1,()   

  1. 1. Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
  • Received:2023-05-23 Published:2024-02-01
  • Corresponding author: Yuekun Zhu
引用本文:

黄涔, 朱跃坤. 慢传输型便秘分子机制研究及临床应用现状[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 82-89.

Cen Huang, Yuekun Zhu. Current status of molecular mechanisms research and clinical applications in slow-transmission constipation[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2024, 14(01): 82-89.

慢性便秘是最常见的胃肠道症状之一,而慢传输型便秘是各类型慢性便秘中最难治疗的,慢传输型便秘以结肠传输延迟为特征,无出口梗阻,当药物难以治疗后,则需要结肠切除术或次全切术。慢传输型便秘病因机制复杂,致病机制目前尚未明确,研究主要集中于肠道神经系统的病理改变、胃肠Cajal间质细胞改变、神经递质和胃肠激素的异常、肠内液体吸收等的影响。现在许多新的研究方法蓬勃发展,有希望为慢传输型便秘发病机制的深入研究提供新的思路。

Chronic constipation is one of the most common gastrointestinal symptoms, and slow-transmission constipation (STC) is the most difficult to treat among all types of chronic constipation. STC is characterized by delayed colonic transmission without outlet obstruction and requires colectomy or subtotal resection when medication is difficult to treat. The etiology of STC is complex and the pathogenesis is not yet clear, and research has focused on pathological changes in the enteric nervous system, the gastrointestinal Cajal interstitial cell alterations, abnormalities in neurotransmitters and gastrointestinal hormones, and the effects of intestinal fluid absorption. Nowadays, many new research methods are flourishing, which are promising to provide new ideas for the in-depth study of the pathogenesis of STC.

图1 肠道神经系统及间质细胞调节肠道运动功能的分子机制注:(1)肠道神经元。RAD21的表达减少导致RUNX1和APOB失调,干扰肠道运输和肠神经元的发育;miRNA-219a-5p和miRNA-338-3p通过神经元和MAPK信号传导改变屏障功能和内脏超敏反应;肠道炎症诱导C/EBPβ激活,导致BDNF和Netrin-1减少,从而导致便秘;ERBB3或ERBB2失调致了广泛的发育异常,导致肠动力障碍。(2)肠道胶质细胞。细菌脂多糖诱导胶质细胞嘌呤P2X受体电流和促炎症细胞因子mRNA表达,导致阿片类药物性便秘;CIPO患者胶质细胞Lpar1表达缺乏,阻断Lpar1对肠道运动和ENS结构产影响。(3)Cajal间质细胞。miR-129-3p通过C-kit和SCF信号通路影响慢传输型便秘患者的肠道Cajal间质细胞自噬;高血糖通过氧化代谢依赖性、MAPK1和MAPK3介导的ETV1稳定和KIT表达刺激ICCs细胞增殖,导致胃排空加快。BNDF脑源性神经营养因子;CIPO慢性肠梗阻;ENS肠道神经系统;ICCs肠道Cajal间质细胞。
图2 肠道内分泌递质和离子通道调节肠道运动功能的分子机制注:(1)内分泌递质。TPH2-R441H导致5-HT降低,并导致ENS发育和肠道运动能力异常;Edwardsiella通过Trpa1激活EEC增加肠道蠕动能力;CFTR下调导致结肠的收缩反应受损;circORC2通过miR-19a调解神经降压素和胃动素水平。(2)离子通道。NHE3抑制剂Tenapanor可以调节肠道水重吸收;PAT1选择性抑制剂PAT1inh-B01主要阻断结肠液体重吸收;DRA抑制剂DRAinh-a270主要阻断小肠液体重吸收;miR-98家族(let-7e和let-7f)和miR-200a-3p/miR-429靶向SCN5A调节NaV1.5电流密度和胃肠道平滑肌收缩力;胃肠道内在的触觉敏感性依赖于Piezo2+EECs,改变肠道蠕动能力,调整肠道转运速度。5-HT 5-羟色胺;5-HT SR 5-羟色胺药物;Trpa1瞬时受体电位锚蛋白1;NHE3 Na+/H+交换器3;Tenapanor NHE3抑制剂;EEC肠道内分泌细胞;PAT1假阴离子转运体1;DRA SLC26A3;Piezo2机械门控离子通道;CFTR囊肿性纤维化跨膜传导调节蛋白。
图3 肠道微生物对宿主肠道运动和分泌功能的调节注:在细菌代谢产物的刺激下,肠上皮细胞可以通过离子泵、转运蛋白和交换剂将水和离子分泌到肠腔内。细菌代谢产物能诱导杯状细胞分泌粘蛋白,并在肠道中形成天然的物理屏障。此外,肠道微生物代谢物和细胞成分可以直接刺激肠神经元或调节肠运动通过肠内分泌细胞。5-HT 5-羟色胺;5-HTR 5-HT受体;AhR芳香烃受体;TGR5 G蛋白偶联胆汁酸受体;TLR Toll样受体;TRPA1瞬间受体电位离子通道。
[1]
Bharucha AE, Lacy BE. Mechanisms, Evaluation, and Management of Chronic Constipation[J]. Gastroenterology, 2020, 158(5): 1232-1249. e3.
[2]
Deb B, Sharma M, Fletcher JG, et al. Inadequate Rectal Pressure and Insufficient Relaxation and Abdominopelvic Coordination in Defecatory Disorders[J]. Gastroenterology, 2022, 162(4): 1111-1122. e2.
[3]
De Marco P, Militello G, Tutino R, et al. The management of the slow transit constipation in the laparoscopic era[J]. G Chir, 2018, 34(5): 297-302.
[4]
Jeong B, Sung TS, Jeon D, et al. Inhibition of TRPC4 channel activity in colonic myocytes by tricyclic antidepressants disrupts colonic motility causing constipation[J]. J Cell Mol Med, 2022 Oct;26(19): 4911-4923.
[5]
Koh SD, Sanders KM. Propulsive colonic contractions are mediated by inhibition-driven poststimulus responses that originate in interstitial cells of Cajal[J]. Proc Natl Acad Sci U S A, 2022, 119(18): e2123020119.
[6]
Schoemaker MH, Hageman JHJ, Ten Haaf D, et al. Prebiotic Galacto-Oligosaccharides Impact Stool Frequency and Fecal Microbiota in Self-Reported Constipated Adults: A Randomized Clinical Trial[J]. Nutrients, 2022, 14(2): 309.
[7]
Geng Q, Zhang QE, Wang F, et al. Comparison of comorbid depression between irritable bowel syndrome and inflammatory bowel disease: A meta-analysis of comparative studies[J]. J Affect Disord, 2018, 237: 37-46.
[8]
Jiang X, Liu Y, Zhang XY, et al. Intestinal Gastrin/CCKBR (Cholecystokinin B Receptor) Ameliorates Salt-Sensitive Hypertension by Inhibiting Intestinal Na+/H+ Exchanger 3 Activity Through a PKC(Protein Kinase C)-Mediated NHERF1 and NHERF2 Pathway [J]. Hypertension, 2022, 79(8): 1668-1679.
[9]
Liu J, Gu L, Zhang M, et al. The Fecal Microbiota Transplantation: A Remarkable Clinical Therapy for Slow Transit Constipation in Future[J]. Front Cell Infect Microbiol, 2021, 11: 732474.
[10]
Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(6): 338-351.
[11]
Camilleri M. Gastrointestinal motility disorders in neurologic disease[J]. J Clin Invest, 2021, 131(4): e143771.
[12]
Serra J, Pohl D, Azpiroz F, et al. European society of neurogastroenterology and motility guidelines on functional constipation in adults[J]. Neurogastroenterol Motil, 2020, 32(2): e13762.
[13]
Mahurkar-Joshi S, Rankin CR, Videlock EJ, et al. The Colonic Mucosal MicroRNAs, MicroRNA-219a-5p, and MicroRNA-338-3p Are Downregulated in Irritable Bowel Syndrome and Are Associated With Barrier Function and MAPK Signaling[J]. Gastroenterology, 2021, 160(7): 2409-2422. e19.
[14]
Le TL, Galmiche L, Levy J, et al. Dysregulation of the NRG1/ERBB pathway causes a developmental disorder with gastrointestinal dysmotility in humans[J]. J Clin Invest, 2021, 131(6): e145837.
[15]
Bonora E, Bianco F, Cordeddu L, et al. Mutations in RAD21 disrupt regulation of APOB in patients with chronic intestinal pseudo-obstruction[J]. Gastroenterology, 2015, 148(4): 771-782. e11.
[16]
Chen C, Ahn EH, Kang SS, et al. Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimer's disease mouse model[J]. Sci Adv, 2020, 6(31): eaba0466.
[17]
Xia Y, Qadota H, Wang ZH, et al. Neuronal C/EBPβ/AEP pathway shortens life span via selective GABAnergic neuronal degeneration by FOXO repression[J]. Sci Adv, 2022, 8(13): eabj8658.
[18]
Ahn EH, Kang SS, Liu X, et al. BDNF and Netrin-1 repression by C/EBPβ in the gut triggers Parkinson's disease pathologies, associated with constipation and motor dysfunctions[J]. Prog Neurobiol, 2021, 198: 101905.
[19]
Verkhratsky A, Ho MS, Zorec R, et al. The Concept of Neuroglia[J]. Adv Exp Med Biol, 2019, 1175: 1-13.
[20]
Ahmadzai MM, Seguella L, Gulbransen BD. Circuit-specific enteric glia regulate intestinal motor neurocircuits[J]. Proc Natl Acad Sci U S A, 2021, 118(40): e2025938118.
[21]
Delvalle NM, Fried DE, Rivera-Lopez G, et al. Cholinergic activation of enteric glia is a physiological mechanism that contributes to the regulation of gastrointestinal motility[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 315(4): G473-G483.
[22]
Grubišić V, McClain JL, Fried DE, et al. Enteric Glia Modulate Macrophage Phenotype and Visceral Sensitivity following Inflammation[J]. Cell Rep, 32(10): 108100.
[23]
Chow AK, Grubišić V, Gulbransen BD. Enteric Glia Regulate Lymphocyte Activation via Autophagy-Mediated MHC-II Expression [J]. Cell Mol Gastroenterol Hepatol, 2021, 12(4): 1215-1237.
[24]
Bhave S, Gade A, Kang M, et al. Connexin-purinergic signaling in enteric glia mediates the prolonged effect of morphine on constipation[J]. FASEB J, 2017, 31(6): 2649-2660.
[25]
Ahmadzai MM, McClain JL, Dharshika C, et al. LPAR1 regulates enteric nervous system function through glial signaling and contributes to chronic intestinal pseudo-obstruction[J]. J Clin Invest, 2022, 132(4): e149464.
[26]
Camilleri M, Ford AC, Mawe GM, et al. Chronic constipation[J]. Nat Rev Dis Primers, 2017, 3: 17095.
[27]
Hayashi Y, Toyomasu Y, Saravanaperumal SA, et al. Hyperglycemia Increases Interstitial Cells of Cajal via MAPK1 and MAPK3 Signaling to ETV1 and KIT, Leading to Rapid Gastric Emptying[J]. Gastroenterology, 2017, 153(2): 521-535. e20.
[28]
Wang H, Ren B, Pan J, et al. Effect of miR-129-3p on autophagy of interstitial cells of Cajal in slow transit constipation through SCF C-kit signaling pathway[J]. Acta Biochim Pol, 2022, 69(3): 579-586.
[29]
Bellono NW, Bayrer JR, Leitch DB, et al. Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways[J]. Cell, 2017, 170(1): 185-198. e16.
[30]
Israelyan N, Del Colle A, Li Z, et al. Effects of Serotonin and Slow-Release 5-Hydroxytryptophan on Gastrointestinal Motility in a Mouse Model of Depression[J]. Gastroenterology, 2019, 157(2): 507-521. e4.
[31]
Ye L, Bae M, Cassilly CD, et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways[J]. Cell Host Microbe, 2021, 29(2): 179-196. e9.
[32]
Yeh KM, Johansson O, Le H, et al. Cystic fibrosis transmembrane conductance regulator modulates enteric cholinergic activities and is abnormally expressed in the enteric ganglia of patients with slow transit constipation[J]. J Gastroenterol, 2019, 54(11): 994-1006.
[33]
Wang YY, Lu RY, Shi J, et al. CircORC2 is involved in the pathogenesis of slow transit constipation via modulating the signalling of miR-19a and neurotensin/motilin[J]. J Cell Mol Med, 2021, 25(8): 3754-3764.
[34]
Camilleri M, Bharucha AE. Behavioural and new pharmacological treatments for constipation: getting the balance right[J]. Gut, 2010, 59(9): 1288-1296.
[35]
Cil O, Haggie PM, Tan JT, et al. SLC26A6-selective inhibitor identified in a small-molecule screen blocks fluid absorption in small intestine[J]. JCI Insight, 2021, 6(11): e147699.
[36]
Mazzone A, Strege PR, Gibbons SJ, et al. microRNA overexpression in slow transit constipation leads to reduced NaV1. 5 current and altered smooth muscle contractility[J]. Gut, 2020, 69(5): 868-876.
[37]
Feng J, Luo J, Yang P, Du J, et al. Piezo2 channel-Merkel cell signaling modulates the conversion of touch to itch[J]. Science, 2018, 360(6388): 530-533.
[38]
Treichel AJ, Finholm I, Knutson KR, et al. Specialized Mechanosensory Epithelial Cells in Mouse Gut Intrinsic Tactile Sensitivity[J]. Gastroenterology, 2022, 162(2): 535-547. e13.
[39]
Fujimura KE, Slusher NA, Cabana MD, et al. Role of the Gut Microbiota in Defining Human Health[J]. Expert Rev Anti Infect Ther, 2010, 8(4): 435-454.
[40]
Obata Y, Pachnis V. The Effect of Microbiota and the Immune System on the Development and Organization of the Enteric Nervous System[J]. Gastroenterology, 2016, 151(5): 836-844.
[41]
Schoeler M, Caesar R. Dietary Lipids, Gut Microbiota and Lipid Metabolism[J]. Reviews in endocrine & metabolic disorders, 2019, 20.
[42]
Liang Y-X, Wen P, Wang Y, et al. The Constipation-Relieving Property of d-Tagatose by Modulating the Composition of Gut Microbiota[J]. Int J Mol Sci, 2019, 20: 5721.
[43]
Fan Y, Xu C, Xie L, et al. Abnormal Bile Acid Metabolism Is an Important Feature of Gut Microbiota and Fecal Metabolites in Patients with Slow Transit Constipation[J]. Front Cell Infect Microbiol, 2022, 12: 956528.
[44]
Huang J, Lin B, Zhang Y, et al. Bamboo Shavings Derived O-Acetylated Xylan Alleviates Loperamide-Induced Constipation in Mice[J]. Carbohydr Polym, 2022, 276: 118761.
[45]
Ohkusa T, Koido S, Nishikawa Y, et al. Gut Microbiota and Chronic Constipation: A Review and Update[J]. Front Med-lausanne, 2019, 6: 19.
[46]
Du Y, Li Y, Xu X, et al. Probiotics for Constipation and Gut Microbiota in Parkinson’s Disease[J]. Parkinsonism Relat Disord, 2022, 103: 92-97.
[47]
Coyte K. Z, Rakoff-Nahoum S. Understanding Competition and Cooperation within the Mammalian Gut Microbiome[J]. Curr Biol, 2019, 29: R538-R544.
[48]
Mazzone A, Farrugia G. Evolving Concepts in the Cellular Control of Gastrointestinal Motility: Neurogastroenterology and Enteric Sciences[J]. Gastroenterol Clin North Am, 2007, 36: 499-513, vii.
[49]
Bhattarai Y, Jie S, Linden DR, et al. Bacterially Derived Tryptamine Increases Mucus Release by Activating a Host Receptor in a Mouse Model of Inflammatory Bowel Disease[J]. iScience, 2020, 23(12): 101798.
[50]
Vicentini FA, Keenan CM, Wallace LE, et al. Intestinal Microbiota Shapes Gut Physiology and Regulates Enteric Neurons and Glia[J]. Microbiome, 2021, 9: 210.
[51]
Ford AC, Moayyedi P, Lacy BE, et al. Task Force on the Management of Functional Bowel Disorders American College of Gastroenterology Monograph on the Management of Irritable Bowel Syndrome and Chronic Idiopathic Constipation[J]. Am J Gastroenterol, 2014, 109 Suppl 1, S2-26, quiz S27.
[52]
Bharucha AE, Pemberton JH, Locke GR 3rd. American Gastroenterological Association Technical Review on Constipation[J]. Gastroenterology, 2013, 144(1): 218-238.
[53]
Ford AC, Suares NC. Effect of Laxatives and Pharmacological Therapies in Chronic Idiopathic Constipation: Systematic Review and Meta-Analysis[J]. Gut, 2011, 60: 209-218.
[54]
Kamm MA, Mueller-Lissner S, Wald A, et al. Oral Bisacodyl Is Effective and Well-Tolerated in Patients with Chronic Constipation[J]. Clin Gastroenterol Hepatol, 2011, 9: 577-583.
[55]
Shah ED, Kim HM, Schoenfeld P. Efficacy and Tolerability of Guanylate Cyclase-C Agonists for Irritable Bowel Syndrome with Constipation and Chronic Idiopathic Constipation: A Systematic Review and Meta-Analysis[J]. Am J Gastroenterol, 2018, 113(3): 329-338.
[56]
Huang L, Zhu Q, Qu X, et al. Microbial Treatment in Chronic Constipation[J]. Sci China Life Sci, 2018, 61(7): 744-752.
[57]
Wilkinson-Smith V, Bharucha E, Emmanuel A, et al. When All Seems Lost: Management of Refractory Constipation-Surgery, Rectal Irrigation, Percutaneous Endoscopic Colostomy, and More[J]. Neurogastroenterol Motil, 2018, 30: e13352.
[58]
Rao SSC, Benninga MA, Bharucha AE, et al. ANMS-ESNM Position Paper and Consensus Guidelines on Biofeedback Therapy for Anorectal Disorders[J]. Neurogastroenterol Motil, 2015, 27: 594-609.
[59]
Falletto E, Brown S, Gagliardi G. Sacral Nerve Stimulation for Faecal Incontinence and Constipation in Adults[J]. Tech Coloproctol, 2018, 22(2): 125-127.
[1] 李润泽, 任剑寒, 黄德兰, 罗皓天, 周晨, 王伟财. 长链非编码RNA调控成骨分化的研究现状及展望[J]. 中华口腔医学研究杂志(电子版), 2020, 14(05): 271-279.
[2] 李丁昌, 曹李, 陈鹏, 董光龙. 结直肠癌肝转移多阶段机制研究进展[J]. 中华普外科手术学杂志(电子版), 2021, 15(06): 696-699.
[3] 刘晓梅, 张露, 刘旭, 梁蝶. 巨噬细胞迁移抑制因子靶向miR-127-3p对人肾癌细胞生物学行为的影响[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 76-83.
[4] 李卓林, 贾如雪, 吴亚婷, 张胜行, 王水良. 肿瘤转移的分子机制及靶向干预研究新进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 51-58.
[5] 张梦圆, 刘晋灵, 王彤, 张宝林. 黑色素母细胞沿神经的迁移[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(01): 48-50.
[6] 曹润峰, 葛俊文, 方霞, 沈立. 间充质干细胞源性外泌体microRNA在心脏缺血性损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(01): 40-47.
[7] 曹冰, 张晓明, 梁富龙. 单细胞测序分析人类胚胎干细胞神经分化的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(01): 1-7.
[8] 胡明泰, 郑玉廷, 谢峰. 胆囊癌病因及分子机制研究进展[J]. 中华肝脏外科手术学电子杂志, 2021, 10(02): 224-226.
[9] 邰清亮, 施波, 侍新宇, 陈国梁, 陈俊杰, 武冠廷, 王索, 孙金兵, 顾闻, 叶建新, 何宋兵. 腹腔镜次全结肠切除术治疗顽固性慢传输型便秘的疗效分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 478-483.
[10] 周启阳, 何宋兵, 胡优, 陈昕, 周雨迪, 周晓俊. 第四代达芬奇机器人单孔加一腹腔镜全结肠切除术治疗慢传输型便秘一例(附视频)[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 348-352.
[11] 金玺, 孙康, 郭建, 孔梅. 结直肠癌肝转移发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(02): 163-166.
[12] 曹永丽, 王思远, 李宜璐, 吕兵兵, 张春旭, 杨阳, 张远耀, 杨维维, 张文丽, 魏东. 腹腔镜次全结肠旷置造口盲直肠吻合术治疗老年慢传输型便秘的临床疗效观察[J]. 中华结直肠疾病电子杂志, 2022, 11(05): 392-398.
[13] 姜金玉, 张东蕾, 何伟. 蓝光照射氧化损伤模型在眼部疾病中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 168-172.
[14] 李坚, 陶勇, 郦舒伊, 张小花, 胡勇平. 细胞因子与眼科疾病的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(02): 115-119.
[15] 柯杨. 食管鳞癌精准防治基础研究概述[J]. 中华临床医师杂志(电子版), 2021, 15(01): 1-9.
阅读次数
全文


摘要