切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2024, Vol. 14 ›› Issue (02) : 107 -113. doi: 10.3877/cma.j.issn.2095-2015.2024.02.002

论著

增强CT的列线图在鉴别EB病毒相关的胃淋巴上皮瘤样癌与胃腺癌中的应用
袁梦晨1, 刘译阳1, 赵帅1, 陈林1, 高宇1, 肖晓燕1, 尤亚茹1, 梁何俊2, 高剑波1,()   
  1. 1. 450052 郑州大学第一附属医院放射科
    2. 100053 北京,首都医科大学宣武医院消化科
  • 收稿日期:2023-08-25 出版日期:2024-04-01
  • 通信作者: 高剑波
  • 基金资助:
    国家自然科学基金(81971615)

Application of enhanced CT-based nomogram in identifying Epstein-Barr virus-associated lymphoepithelioma-like gastric carcinoma from gastric adenocarcinoma

Mengchen Yuan1, Yiyang Liu1, Shuai Zhao1, Lin Chen1, Yu Gao1, Xiaoyan Xiao1, Yaru You1, Hejun Liang2, Jianbo Gao1,()   

  1. 1. Department of Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
    2. Department of Gastroenterology, Xuanwu Hospital, Capital Medical Universit, Beijing100053, China
  • Received:2023-08-25 Published:2024-04-01
  • Corresponding author: Jianbo Gao
引用本文:

袁梦晨, 刘译阳, 赵帅, 陈林, 高宇, 肖晓燕, 尤亚茹, 梁何俊, 高剑波. 增强CT的列线图在鉴别EB病毒相关的胃淋巴上皮瘤样癌与胃腺癌中的应用[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(02): 107-113.

Mengchen Yuan, Yiyang Liu, Shuai Zhao, Lin Chen, Yu Gao, Xiaoyan Xiao, Yaru You, Hejun Liang, Jianbo Gao. Application of enhanced CT-based nomogram in identifying Epstein-Barr virus-associated lymphoepithelioma-like gastric carcinoma from gastric adenocarcinoma[J/OL]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2024, 14(02): 107-113.

目的

开发和评估一个基于临床及增强CT的列线图,用来鉴别EB病毒(EBV)相关的胃淋巴上皮瘤样癌和胃腺癌。

方法

回顾性分析25例经病理组织学证实的EBV相关的胃淋巴上皮瘤样癌患者的临床及影像学资料,另纳入50例胃腺癌患者作为对照组。采用单因素分析和多因素Logistic回归筛选鉴别两种类型肿瘤的预测因子。构建一个个性化的列线图,并通过绘制ROC曲线、校准曲线以及决策曲线分析评价列线图的区分度、校准度及临床实用价值。采用Bootstrap法进行内部验证。

结果

肿瘤的位置(中部vs上部,OR=1.866,95% CI 0.457~7.626;下部vs上部,OR=14.454,95% CI 2.619~79.778)、CT强化峰值(OR=6.965,95% CI 1.796~27.016)及CT淋巴结状态(OR=4.242,95% CI 1.270~14.164)是淋巴上皮瘤样癌患者的独立鉴别因素。列线图的AUC值为0.815(95% CI 0.718~0.912)。列线图显示出良好的校准度和临床效益。通过200次自举重采样,进行自举验证(内部验证),最终显示该列线图具有良好的区分准确性,模型内部验证的AUC值为0.823(95% CI 0.817~0.830)。

结论

本研究建立的列线图在鉴别EBV相关的胃淋巴上皮瘤样癌与胃腺癌方面具有很大的应用潜力,可为临床的决策提供依据。

Objective

To develop and evaluate a clinical and enhanced CT based nomogram for the differentiation of lymphoepithelioma-like gastric carcinoma associated with Epstein-Barr virus (EBV) from gastric adenocarcinoma.

Methods

The clinical and imaging data of 25 patients with pathohistology- confirmed lymphoepithelioma-like gastric carcinoma were retrospectively analyzed, and 50 patients with gastric adenocarcinoma were included as the control group. Univariate analysis and multivariate Logistic regression were used to screen the predictors for identifying the two types of tumors. A personalized nomogram was constructed, and the distinction degree, calibration degree, and clinical utility value of the nomogram were evaluated by drawing the ROC curve, calibration curve, and decision curve analysis (DCA). Internal validation was performed using the Bootstrap method.

Results

The location of the tumor (middle vs. upper, OR=1.866, 95% CI: 0.457-7.626; lower vs. upper, OR=14.454, 95% CI: 2.619-79.778), CT enhancement peak (OR=6.965, 95% CI: 1.796-27.016) and the lymph node status defined by CT (OR=4.242, 95% CI: 1.270-14.164) were independent differential factors in patients with lymphoepithelioma- like carcinoma. The AUC value of the nomogram was 0.815 (95% CI: 0.718-0.912). The nomogram showed a good calibration and a clinical benefit. For bootstrapping validation (internal validation) with 200 bootstrap-resampling, the nomogram showed good discriminatory accuracy and the AUC value of internal model validation was 0.823 (95% CI: 0.817-0.830).

Conclusion

The nomogram established in this study has great potential in identifying EBV related lymphoepithelioma-like gastric carcinoma from gastric adenocarcinoma and warrants clinical decision making.

图1 61岁的男性EB病毒相关的胃淋巴上皮瘤样癌患者,平扫胃体部可见大弯侧软组织肿块影(1A~1D箭头),其上可见溃疡影,增强扫描呈明显持续性强化。图2 73岁的女性胃腺癌患者,平扫可见胃窦部胃壁不均匀增厚(2A~2D箭头),增强扫描呈中度强化,胃窦腔狭窄,周围可见肿大淋巴结影(2D箭头)。
表1 2组患者临床、免疫组化、实验室、病理及CT影像学指标比较
组别 例数 性别[例(%)] 年龄(岁,±s) pT分期[例(%)] pN分期[例(%)]
≤T3 ≥T4a N0 ≥N1
LELGC组 25 20(80) 5(20) 54.7±10.6 20(80) 5(20) 15(60) 10(40)
G-ADC组 50 40(80) 10(20) 60.2±10.8 37(74) 13(26) 13(26) 37(74)
统计量   0.000 -2.066 0.329 8.235
P   1.000 0.042* 0.566 0.004*
组别 例数 神经侵犯[例(%)] 血管侵犯[例(%)] HER-2[例(%)]
+ ++ +++ ++++
LELGC组 25 12(48) 13(52) 15(60) 10(40) 12(48) 10(40) 2(8) 1(4)
G-ADC组 50 13(26) 37(74) 12(24) 38(76) 22(44) 18(36) 6(12) 4(8)
统计量   3.630 9.375 0.780
P   0.057* 0.002* 0.854
组别 例数 Ki-67指数[例(%)] CA125[例(%)] CA199[例(%)] CA724[例(%)]
低(<50%) 高(≥50%) 正常 升高 正常 升高 正常 升高
LELGC组 25 5(20) 20(80) 25(100) 0(0) 24(96) 1(4) 23(92) 2(8)
G-ADC组 50 10(20) 40(80) 48(96) 2(4) 41(82) 9(18) 37(74) 13(26)
统计量   0 / 1.745 3.375
P   1 0.55 0.186 0.066*
组别 例数 CEA[例(%)] 位置[例(%)] 长径(mm,±s) 厚径(mm,±s)
正常 升高 上部 中部 下部 全胃
LELGC组 25 5(20) 20(80) 8(32) 11(44) 6(24) 0(0) 44.1±19.1 15.9±5.9
G-ADC组 50 10(20) 40(80) 24(48) 7(14) 19(38) 0(0) 53.0±14.4 17.9±5.2
统计量   0 8.230 -2.255 -1.445
P   1 0.016* 0.027* 0.153
组别 例数 厚长比[M(Q1,Q3)] 瘤周脂肪间隙[例(%)] 溃疡[例(%)] CT平扫(HU,±s) CT动脉(HU,±s)
清晰 模糊 不存在 存在
LELGC组 25 0.36(0.31,0.45) 20(80) 5(20) 11(44) 14(56) 40.4±10.0 80.3±25.3
G-ADC组 50 0.34(0.29,0.40) 30(60) 20(40) 16(32) 34(68) 38.6±8.4 80.5±19.2
统计量   -1.158 3.000 1.042 0.815 -0.034
P   0.247 0.083* 0.307 0.418 0.973
组别 例数 CT静脉[HU,M(Q1,Q3)] CT动脉-平扫[HU,M(Q1,Q3)] CT静脉-平扫[HU,M(Q1,Q3)] 均匀强化[例(%)] 强化程度[例(%)]
轻度 中度 重度
LELGC组 25 91.0(75.4,99.9) 36.1(23.9,54.1) 50.8(35.5,62.6) 10(40) 15(60) 1(4) 7(28) 17(68)
G-ADC组 50 80.8(75.0,92.5) 36.5(29.1,49.5) 42.4(31.1,52.9) 25(50) 25(50) 2(4) 16(32) 32(64)
统计量   1.394 -0.348 -0.955 0.670 0.128
P   0.163 0.728 0.339 0.413 0.938
组别 例数 CT强化峰值[例(%)] CT淋巴结状态[例(%)]
动脉期 静脉期 未增大 增大
LELGC组 25 6(24) 19(76) 14(56) 11(44)
G-ADC组 50 27(54) 23(46) 15(30) 35(70)
统计量   6.088 4.751
P   0.014* 0.029*
图3 分别为列线图模型、肿瘤位置、CT强化峰值及CT淋巴结状态的ROC曲线,其AUC值分别为0.815、0.653、0.65及0.63。
图4 基于鉴别诊断模型建立的列线图
表2 多因素Logistic回归分析EB病毒相关的胃淋巴上皮瘤样癌的独立预测因素
图5 列线图模型的ROC曲线,ROC曲线下面积(AUC值)为0.815,模型的敏感度为0.660,特异度为0.840。
图6 校准(Calibration)曲线,横坐标是预测概率,纵坐标是实际概率,刻度0~1表示发生的可能性。Apparent为实际概率线,Ideal为理想线,Bias-corrected为纠正偏差线。
图7 决策曲线分析(DCA),基于连续的潜在风险阈值(X轴)和使用该模型对患者进行风险分层的净收益(Y轴)展示该模型的临床实用性。
[1]
Cheng N, Hui D yang, Liu Y, et al. Is gastric lymphoepithelioma-like carcinoma a special subtype of EBV-associated gastric carcinoma? New insight based on clinicopathological features and EBV genome polymorphisms[J]. Gastric Cancer, 2015, 18(2): 246-255.
[2]
Liu F, Xu Q, Regmi P, et al. Case Report: Primary lymphoepithelioma-like intrahepatic cholangiocarcinoma[J]. Front Oncol, 2023, 13: 1146933.
[3]
Ramos MFKP, Pereira MA, Dias AR, et al. Lymphoepithelioma-like gastric carcinoma: clinicopathological characteristics and infection status[J]. J Surg Res, 2017, 210: 159-168.
[4]
Fang WL, Chen MH, Huang KH, et al. The Clinicopathological Features and Genetic Alterations in Epstein–Barr Virus-Associated Gastric Cancer Patients after Curative Surgery[J]. Cancers(Basel), 2020, 12(6): 1517.
[5]
Bittar Z, Fend F, Quintanilla-Martinez L. Lymphoepithelioma-like carcinoma of the stomach: a case report and review of the literature[J]. Diagn Pathol, 2013, 8(1): 184.
[6]
Mori K, Ando T, Nomura T, et al. Lymphoepithelioma-Like Carcinoma of the Bladder: A Case Report and Review of the Literature[J]. Case Rep Urol, 2013, 2013: 1-3.
[7]
Fu Y, Zheng Y, Wang PP, et al. Pulmonary Lymphoepithelioma-Like Carcinoma Treated with Immunotherapy or Chemotherapy: A Single Institute Experience[J]. Onco Targets Ther, 2021, 14: 1073-1081.
[8]
Fan Y, Shan Q, Gong J, et al. Molecular and Clinical Characteristics of Primary Pulmonary Lymphoepithelioma-Like Carcinoma[J]. Front Mol Biosci, 2021, 8: 736940.
[9]
Wang ZH, Zhao JJ, Yuan Z. Lymphoepithelioma-like gastric carcinoma: A case report and review of the literature[J]. World J Gastroenterol, 2016, 22(10): 3056.
[10]
黄文鹏, 李莉明, 曲利媛, 等. 原发性胃淋巴上皮瘤样癌的临床影像分析[J/OL]. 中华消化病与影像杂志(电子版), 2022, 12(6): 351-356.
[11]
Li N, Deng W, Ma J, et al. Prognostic evaluation of Nanog, Oct4, Sox2, PCNA, Ki67 and E-cadherin expression in gastric cancer[J]. Med Oncol, 2015, 32(1): 433.
[12]
Chen M, Chen Y, Fang X, et al. Clinical features and treatment outcome of lymphoepithelioma-like carcinoma from multiple primary sites: a population-based, multicentre, real-world study[J]. BMC Pulm Med, 2022, 22(1): 360.
[13]
陈瑚, 蒋逸婷, 陈永钦, 等. 胃淋巴上皮瘤样癌27例临床病理分析[J]. 临床与实验病理学杂志, 2017, 33(9): 1016-1018.
[14]
Chiaravalli A, Cornaggia M, Furlan D, et al. The role of histological investigation in prognostic evaluation of advanced gastric cancer: Analysis of histological structure and molecular changes compared with invasive pattern and stage[J]. Virchows Arch, 2001, 439(2): 158-169.
[15]
Hayat K, Wu Y, Hu Y, et al. Gastric lymphoepithelial-like carcinoma presenting as a sub-mucosal mass: a case report and literature review[J]. Am J Transl Res, 2023, 15(4): 2561-2567.
[16]
Komori M, Asayama Y, Fujita N, et al. Extent of arterial tumor enhancement measured with preoperative MDCT gastrography is a prognostic factor in advanced gastric cancer after curative resection[J]. AJR Am J Roentgenol, 2013, 201(2): W253-261.
[17]
Chen XH, Ren K, Liang P, et al. Spectral computed tomography in advanced gastric cancer: Can iodine concentration non-invasively assess angiogenesis?[J]. World J Gastroenterol, 2017, 23(9): 1666-1675.
[18]
Li L, HuangW, Hou P, et al. A computed tomography-based preoperative risk scoring system to distinguish lymphoepithelioma-like gastric carcinoma from non-lymphoepithelioma-like gastric carcinoma[J]. Front Oncol, 2022, 12: 872814.
[19]
Liu S, Jin L, Xu X, et al. Pathological and computed tomography findings of lymphoepithelioma-like gastric carcinoma with epithelioid granulomas: A case report[J]. Oncol Lett, 2013, 5(2): 549-551.
[1] 胡可, 鲁蓉. 基于多参数超声特征的中老年女性压力性尿失禁诊断模型研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 477-483.
[2] 余晓青, 高欣, 罗文培, 杨露. BI-RADS 4类结节患者的乳腺癌风险预测模型[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 217-223.
[3] 蒲彦婷, 吴翠先, 兰玉梅. 类风湿关节炎患者骨质疏松症风险预测列线图模型构建[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 596-603.
[4] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[5] 杜佳丽, 鲍睿, 乔春红, 韩伟. 中孕期宫颈功能不全孕妇经阴道紧急宫颈环扎术后不良妊娠结局预测模型构建[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 403-409.
[6] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[7] 张瑜, 姜梦妮. 基于DWI信号值构建局部进展期胰腺癌放化疗生存获益预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 657-664.
[8] 杨秀君, 崔梦莹, 刘水, 盛基尧, 张丹. 基于SEER数据库胰头部胰腺神经内分泌癌患者预后列线图构建与验证[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 520-525.
[9] 单良, 刘怡, 于涛, 徐丽. 老年股骨颈骨折术后患者心理弹性现状及影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 294-300.
[10] 陈倩倩, 袁晨, 刘基, 尹婷婷. 多层螺旋CT 参数、癌胚抗原、错配修复基因及病理指标对结直肠癌预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 507-511.
[11] 张立俊, 孙存杰, 胡春峰, 孟冲, 张辉. MSCT、DCE-MRI 评估术前胃癌TNM 分期的准确性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 519-523.
[12] 刘燚隆, 党荣广, 艾蓉, 张凯. 肝硬化合并静脉曲张出血患者内镜治疗后再出血风险的模型建立与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 336-342.
[13] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[14] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[15] 闫战涛, 王辉, 周梓迪, 史勇强, 陈铜兵. 胃淋巴上皮瘤样癌三级淋巴结构特征及其与预后的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 455-461.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?