切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2025, Vol. 15 ›› Issue (05) : 460 -466. doi: 10.3877/cma.j.issn.2095-2015.2025.05.008

论著

基于CT影像组学预测胃癌根治术复发风险的临床研究
李曰平, 鞠倩, 张汝梦, 韩博()   
  1. 266000 山东省,康复大学青岛中心医院胃肠外科
  • 收稿日期:2025-04-08 出版日期:2025-10-01
  • 通信作者: 韩博

Clinical study on predicting recurrence risk of radical gastrectomy based on CT imaging

Yueping Li, Qian Ju, Rumeng Zhang, Bo Han()   

  1. Department of Gastrointestinal Surgery, Qingdao Central Hospital of Rehabilitation University, Qingdao 266000, China
  • Received:2025-04-08 Published:2025-10-01
  • Corresponding author: Bo Han
引用本文:

李曰平, 鞠倩, 张汝梦, 韩博. 基于CT影像组学预测胃癌根治术复发风险的临床研究[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 460-466.

Yueping Li, Qian Ju, Rumeng Zhang, Bo Han. Clinical study on predicting recurrence risk of radical gastrectomy based on CT imaging[J/OL]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2025, 15(05): 460-466.

目的

基于CT影像组学特征构建胃癌根治术后复发风险预测模型,探索其术前动态评估的临床价值。

方法

回顾性选择2020年1月至2023年12月于康复大学青岛中心医院接受胃癌根治术的215例胃腺癌患者作为研究对象,所有患者术前均完成多期相(平扫、动脉期、静脉期)增强CT检查。使用256层CT进行标准化扫描,通过ITK-SNAP软件手动勾画静脉期肿瘤三维容积(观察者间一致性Kappa>0.85),并基于PyRadiomics提取1152个影像组学特征。经观察者内、观察者间一致性检验(ICC≥0.75)、单因素分析及LASSO回归(λ=0.032,10倍交叉验证)筛选核心特征并构建Logistic回归模型。数据集按7∶3比例分层随机分为训练集(150例)和独立验证集(65例),评估模型的预测效能。

结果

215例胃癌患者中67例患者术后出现复发,其余148例未见术后复发。单因素分析结果显示:复发组和未复发组患者在脉管浸润、神经浸润、肿瘤分化程度、手术切缘状态和接受辅助化疗方面存在明显差异,差异有统计学意义(P<0.05)。经过筛选后,模型最终保留8个核心影像组学特征,包括形态学、一阶统计、纹理分析及小波变换特征等。受试者工作特征曲线分析显示,CT影像组学模型在预测训练集的曲线下面积(AUC)为0.865,敏感度和特异度分别为69.4%、88.1%;在预测验证集的AUC为0.875,敏感度和特异度分别为94.4%、63.8%。

结论

基于CT影像组学特征构建的预测模型在胃癌根治术后复发风险预测中展现出较好的诊断效能,实现了对胃癌患者的术前动态风险评估。该模型能够为高风险患者的强化随访及辅助治疗精准化提供客观决策支持。

Objective

To construct a prediction model based on CT radiomics features to predict the recurrence risk of gastric cancer after radical operation, and to explore the clinical value of its preoperative dynamic evaluation.

Methods

A total of 215 patients with gastric adenocarcinoma who underwent radical gastrectomy from January 2020 to December 2023 were retrospectively selected as the research objects. All patients completed multi-phase (plain scan, arterial phase and venous phase) enhanced CT examination before operation. Siemens 256-slice CT was used for standardized scanning, and the three-dimensional volume of venous tumor was manually delineated by ITK-SNAP software (the consistency between observers was Kappa>0.85), and 1152 imaging features were extracted based on PyRadiomics. The core features were screened by intra-observer and inter-observer consistency test (ICC≥0.75), single factor analysis and LASSO regression (λ=0.032, 10 times cross-validation) and a Logistic regression model was constructed. The data set was randomly divided into training set (150 cases) and independent verification set (65 cases) according to the ratio of 7∶3, and the prediction efficiency of the model was evaluated.

Results

Among 215 patients with gastric cancer, 67 patients had postoperative recurrence, and the remaining 148 patients did not have postoperative recurrence. The results of univariate analysis showed that there were significant differences in vascular infiltration, nerve infiltration, tumor differentiation, surgical margin status and receiving adjuvant chemotherapy between patients with recurrence and those without recurrence (P<0.05). After a series of screening, the model finally retained eight core image omics features, including morphology, first-order statistics, texture analysis and wavelet transform features. Receiver operating characteristic curve analysis showed that the area under the curve (AUC) of the CT image omics model in predicting the training set was 0.865, and the sensitivity and specificity were 69.4% and 88.1% respectively. The AUC in predicting validation set was 0.875, and the sensitivity and specificity were 94.4% and 63.8% respectively.

Conclusion

The prediction model based on the characteristics of CT imaging shows good diagnostic efficiency in the risk prediction of recurrence after radical gastrectomy, and realizes the preoperative dynamic risk assessment of gastric cancer patients. This model can provide objective decision support for intensive follow-up and accurate adjuvant treatment of high-risk patients.

表1 复发组和未复发组胃癌患者的一般临床特征比较[例(%)]
图1 观察者间可重复性评估
图2 观察者内可重复性评估
图3 Lasso系数分布收敛图
图4 10倍交叉验证取得最佳λ值
表2 最终筛选出的8个影像组学特征及其相关系数
图5 基于CT影像组学模型在预测训练集的ROC曲线
图6 基于CT影像组学模型在预测验证集的ROC曲线
表3 CT影像组学模型预测的ROC结果
[1]
霍俊杰, 陈凤菊, 段颖欣, 等. 基于CT影像组学构建胃癌新辅助免疫治疗联合化疗疗效的预测模型[J]. 中国肿瘤临床, 2025, 52(1): 16-23.
[2]
Wang H, Shi J, Yang Y, et al. Machine learning methods predict recurrence of pN3b gastric cancer after radical resection[J]. Transl Cancer Res, 2024, 13(3): 1519-1532.
[3]
黄昊. 胃癌影像组学的新研究进展[J]. 实用放射学杂志, 2023, 39(2): 328-330.
[4]
程震, 尤亚茹, 詹鹏超, 等. 基于CT影像组学预测不可切除性胃癌姑息性化疗疗效[J]. 放射学实践, 2025, 40(1): 16-23.
[5]
于昕冉, 冯兵. 基于CT影像组学预测非肌层浸润性膀胱癌术后复发的临床价值[J]. 临床放射学杂志, 2024, 43(5): 788-793.
[6]
中华医学会肿瘤学分会早诊早治学组. 胃癌早诊早治中国专家共识(2023版)[J]. 中华消化外科杂志, 2024, 23(1): 23-36.
[7]
韩晓梦, 刘顺利, 林吉征, 等. 静脉期CT影像组学预测新辅助化疗用于局部进展期胃癌效果[J]. 中国介入影像与治疗学, 2025, 22(1): 37-42..
[8]
马雯雯, 蒋常琴, 冯强, 等. 基于CT的影像组学对胃癌不同站点正常大小淋巴结转移的预测价值[J]. 中国中西医结合影像学杂志, 2024, 22(3): 262-266, 277.
[9]
王科佳, 汪国祥, 陈基明, 等. 基于CT影像组学的列线图术前预测胃癌淋巴结转移的价值[J]. 中国中西医结合影像学杂志, 2024, 22(3): 255-261.
[10]
邢静静, 刘译阳, 周悦, 等. 术前CT影像组学联合CT及病理特征预测局部进展期食管鳞癌术后早期复发[J]. 中国医学影像技术, 2024, 40(6): 863-868.
[11]
陈飞, 胡羽澄, 吴桐, 等. 基于影像组学的CT和MRI诊断肝癌射频消融术后复发预测中的比较研究[J]. 影像科学与光化学, 2024, 42(3): 177-186.
[12]
Ruan D, Zhao L, Cai J, et al. Evaluation of FAPI PET imaging in gastric cancer: a systematic review and meta-analysis[J]. Theranostics, 2023, 13(13): 4694-4710.
[13]
黄玲玲, 余鎏, 赵泉, 等. 基于增强CT影像组学模型预测食管癌患者放化疗完全缓解后肿瘤复发的价值[J]. 中国临床医学影像杂志, 2023, 34(2): 91-96.
[14]
刘波, 张登云, 王鹤翔, 等. 基于增强CT的影像组学模型在胃癌cT4分期中的预测价值[J]. 临床放射学杂志, 2023, 42(1): 77-85.
[15]
Jiang Y, Zhang Z, Yuan Q, et al. Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study[J]. Lancet Digit Health, 2022, 4(5): e340-e350.
[16]
杨宁, 夏平, 师毅冰, 等. 基于CT、MRI增强门静脉期的影像组学和临床指标预测模型预测单发肝细胞癌切除术后早期复发的价值[J]. 临床放射学杂志, 2024, 43(5): 746-752.
[17]
Cao M, Hu C, Li F, et al. Development and validation of a deep learning model for predicting gastric cancer recurrence based on CT imaging: a multicenter study[J]. Int J Surg, 2024, 110(12): 7598-7606.
[18]
李桥, 林澍莘, 钟穗兴, 等. 基于CT影像组学列线图预测原发性上皮性卵巢癌治疗后复发的价值[J]. 临床放射学杂志, 2023, 42(5): 800-806.
[19]
娄飞飞, 陈青青, 黄昊, 等. 基于CT影像组学术前预测淋巴结阴性胃癌淋巴血管侵犯[J]. 中国医学影像学杂志, 2024, 32(1): 73-80.
[20]
Li Y, Huang L, Li L, et al. The Evaluation of Gastric Cancer Lymphovascular Invasion Using CT Volume Perfusion[J]. Discov Med, 2024, 36(189): 2037-2045.
[1] 孙圣梅, 习一清, 安宁. 人表皮生长因子受体2阳性型乳腺癌新辅助治疗响应的基因预测模型[J/OL]. 中华普通外科学文献(电子版), 2025, 19(05): 332-339.
[2] 中国研究型医院学会机器人与腹腔镜外科专业委员会, 《中华消化外科杂志》编辑委员会. 完全单孔腹腔镜胃癌手术操作专家共识(2025版)[J/OL]. 中华普通外科学文献(电子版), 2025, 19(04): 217-224.
[3] 钟思权, 雒洪志, 周仕海, 孙浩, 叶少炜, 郑政, 冯春在. 近端胃切除双通道吻合重建在食管胃结合部癌中的应用分析:一项术后短期结局的回顾性研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(04): 264-268.
[4] 钱龙, 蔡大明, 王行舟, 艾世超, 胡琼源, 孙锋, 宋鹏, 王峰, 王萌, 陆晓峰, 朱欢欢, 沈晓菲, 管文贤. 局部不可切除胃癌转化治疗(联合免疫治疗)后淋巴结转移的相关危险因素分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 624-627.
[5] 薛兆强, 袁寅. 双镜联合保功能胃癌根治术治疗早期近端胃癌的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 628-632.
[6] 贺子蕗, 张靖, 刘卓, 李昊楠, 赵鑫鑫, 孙泽辉. 改良内翻手工缝合的Overlap吻合法在腹腔镜全胃切除术中的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 633-636.
[7] 王思竣, 王琼, 李珂雨, 袁新普, 张硕珉, 马睿, 谢天宇, 张朝军. 胃上部癌新辅助化疗联合免疫治疗后实施近端胃切除术的临床疗效分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 637-641.
[8] 周丽君, 李姣姣, 孙燕, 王露, 钱蓉. 不同吻合方式对腹腔镜辅助远端胃癌根治术患者术后恢复的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 642-645.
[9] 杨志, 夏雪峰, 管文贤. DeepSurv深度学习模型辅助胃癌术后精准化疗策略研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 501-505.
[10] 王小军, 蔡瑜, 安艳新, 刘斌, 冯永安. 完全腹腔镜远端胃癌根治术治疗局部进展期胃癌的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 509-512.
[11] 林水荣, 宋子敏, 于玺, 李绍强, 华赟鹏, 沈顺利. 术前抗病毒治疗对HBV相关肝癌肝切除术后肝衰竭影响[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 700-706.
[12] 赵俊宇, 林航宇, 李会灵, 王显飞, 游川. 肝癌肝切除术后大量腹水预测模型的建立与验证[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 740-747.
[13] 周厚宁, 崔巧玲, 付瑞标. 营养风险指数、营养控制状态评分和尿素肌酐比值对胃癌患者营养和预后的评价[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 444-448.
[14] 乔旭东, 杜苗苗, 骆瑞闯. 胃充盈超声造影联合血清TGFBI、PD-L1对老年胃癌术前分期的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 449-453.
[15] 胡坚栋, 耿辉. 腹腔镜D2根治术联合胃背侧系膜近胃端完整系膜切除术在进展期胃癌中的应用[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 454-459.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?