切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2026, Vol. 16 ›› Issue (01) : 1 -5. doi: 10.3877/cma.j.issn.2095-2015.2026.01.001

专家论坛

零液氦磁共振成像系统的发展现状和展望
孙钢()   
  1. 250031 济南,中国人民解放军联勤保障部队第九六〇医院放射诊断科
  • 收稿日期:2025-08-04 出版日期:2026-02-01
  • 通信作者: 孙钢

Development status and prospects of cryogen-free MRI systems

Gang Sun()   

  1. Department of Radiological Diagnosis, the 960th Hospital of the Joint Logistic Support Force of PLA, Jinan 250031, China
  • Received:2025-08-04 Published:2026-02-01
  • Corresponding author: Gang Sun
引用本文:

孙钢. 零液氦磁共振成像系统的发展现状和展望[J/OL]. 中华消化病与影像杂志(电子版), 2026, 16(01): 1-5.

Gang Sun. Development status and prospects of cryogen-free MRI systems[J/OL]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2026, 16(01): 1-5.

零液氦(无液氦消耗)磁共振成像技术是近年来磁共振领域的重要突破,显著降低了传统超导磁体对液氦的依赖。本文综述了磁共振系统减少液氦需求的关键技术进展,主要包括传导冷却技术、零液氦磁共振成像系统的安装和应用等。零液氦磁共振成像系统不仅可以降低设备的运行和维护成本,还能提升系统的安全性和稳定性。未来,随着技术的进一步成熟与推广,零液氦磁共振成像系统将展现出更大的经济效益和社会效益。

The development of cryogen-free magnetic resonance imaging (MRI) systems marks a critical innovation in superconducting magnet technology, addressing the persistent limitations imposed by cryogenic dependency in conventional MRI systems. This review synthesizes the technological advancements in reducing the demand for liquid helium in MRI systems, including conduction cooling technology, installation and application of cryogen-free MRI systems, and more. The cryogen-free MRI systems can not only reduce the operating and maintenance costs of the equipment, but also improve the safety and stability of the system. In the future, with further technological maturity, cryogen-free MRI systems will yield greater economic and social benefits.

[1]
Banno N. Low-temperature superconductors: Nb3Sn, Nb3Al, and NbTi[J]. Superconductivity, 2023, 6: 100047.
[2]
Qin MJ, Xu X, Shi XD. High-temperature superconductors, Editor(s): Tapash Chakraborty, Encyclopedia of Condensed Matter Physics(Second Edition)[M]. Academic Press, 2024: 565-579.
[3]
Luo C, Liu G, Deng Y, et al. Design and optimization of liquid helium-free cooling systems for magnetic resonance imaging device using multi-physical modeling[J]. Case Studies in Thermal Engineering, 2025, 66: 105761.
[4]
Mahesh M, Barke PB. The MRI Helium Crisis: Past and Future[J]. J Am Coll Radiol, 2016, 13(12): 1536-1537.
[5]
Mukhatov A. A comprehensive review on magnetic imaging techniques for biomedical applications[J]. Nano Select, 2023. 4(3): 213-230.
[6]
Cao Q, Li Y, Fang C, et al. Status quo and utilization trend of global helium resources[J]. Front Environ Sci, 2022, 10: 1028471.
[7]
Yang RY, He YY, Li WT. Global Helium Supply and Helium Supply Safety for China[C]//International Field Exploration and Development Conference. Springer: Singapore, 2024.
[8]
Siddhantakar A, Santillán-Saldivar J, Kippes T, et al. Helium resource global supply and demand: Geopolitical supply risk analysis [J]. Resources, Conservation and Recycling, 2023, 193: 106935.
[9]
凌辉, 周勇义, 张黎伟, 等. 氦资源对科学仪器及科研项目的影响与对策[J]. 科学管理研究, 2012, 30(6): 4.
[10]
Kabasawa H. MR Imaging in the 21st Century: Technical Innovation over the First Two Decades[J]. Magn Reson Med Sci, 2022, 21: 71-82.
[11]
Cosmus TC, Parizh M. Advances in Whole-Body MRI Magnets[J]. IEEE Trans Appl Supercond, 2010, 9: 2104-2109.
[12]
GB 8958-2006缺氧危险作业安全规程[S]. 北京: 中国国家标准化管理委员会, 2006.
[13]
O'Reilly T, Webb A. Deconstructing and reconstructing MRI hardware [J]. J Magn Reson, 2019, 306: 134-138.
[14]
Jimeno MM, Vaughan JT, Geethanath S. Superconducting magnet designs and MRI accessibility: A review[J]. NMR Biomed, 2023, 36(9): e4921-e4921.
[15]
Cosmus TC, Parizh M, AMorrow G. Progress in MRI magnets[J]. IEEE Trans Appl Supercond, 2000, 10: 744-751.
[16]
Lvovsky Y, Jarvis P. Superconducting systems for MRI—Present solutions and new trends[J]. IEEE Trans Appl Supercond, 2005, 15: 1317-1325.
[17]
Bagdinov A, Demikhov E, Kostrov E, et al. Performance test of 1.5T cryogen-free orthopedic MRI magnet[J]. IEEE Trans Appl Supercon, 2017, 28(99): 1-4.
[18]
Rybakov A, Bagdinov A, Demikhov E, et al. 1.5T Cryogen Free Superconducting Magnet for Dedicated MRI[J]. IEEE Trans Appl Supercon, 2016, 26(4): 1-3.
[19]
O'Reilly T, Webb A. Deconstructing and reconstructing MRI hardware[J]. J Magn Reson, 2019, 306: 134-138.
[20]
Nazi A, Ali Chaudhry M, Nadeem B, et al. Global helium shortage leading to the shutting of imaging modalities is the world’s next medical crisis-driving factors, future of helium-free magnetic resonance imaging systems, and alternatives to magnetic resonance imaging[J]. Int J Surg: Global Health, 2023, 6: e0155.
[21]
Qu H, Wu H, Feng Z, et al. Thermal Analysis of the 4 K Cryostat Within a 1.5T Conduction-Cooled Superconducting Magnet for Whole-Body MRI Application[J]. IEEE Trans Appl Supercon, 2024, 34: 1-5.
[22]
Wang Y, Wang S, Liang P, et al. Design, construction and performance testing of a 1.5T cryogen-free low-temperature superconductor whole-body MRI magnet[J]. Supercond Sci Technol, 2023, 36: 045002.
[23]
GB/T 1048-2019管道元件公称压力的定义和选用[S]. 北京: 中国国家标准化管理委员会, 2019.
[24]
慧娴. 研发MRI无氦超导磁体的可行性及技术要点[J]. 中国医疗器械杂志, 2018, 42(5): 345-349.
[25]
Baig T, Yao Z, Doll D, et al. Conduction cooled magnet design for 1.5T, 3.0T and 7.0 T MRI systems[J]. Supercond Sci Technol, 2014, 27(12): 125012.
[26]
Dai Y, Yan L, Zhao B, et al. Tests on a 6T Conduction-Cooled Superconducting Magnet[J]. IEEE Trans Appl Supercon, 2006, 16(2): 961-964.
[27]
Liang Q, Li Y, Wang Q. Cryogenic Oscillating Heat Pipe for Conduction-Cooled Superconducting Magnets[J]. IEEE Trans Appl Supercon, 2018, 28(3): 1-5.
[28]
Xu Z, Wang H, Feng Z, et al. Design and simulation of a 7.0T conduction cooled superconducting magnet[J]. Sci Rep, 2025, 15(1): 15699.
[29]
Baig T, Amin AA, Deissler RJ, et al. Conceptual designs of conduction cooled MgB2 magnets for 1.5 and 3.0T full body MRI systems[J]. Supercond Sci Technol, 2017, 30(4): 043002.
[30]
Kim HS, Kovacs C, Rindfleisch M, et al. Demonstration of a conduction cooled react and wind MgB2 coil segment for MRI applications[J]. IEEE Trans Appl Supercon, 2016, 26(4): 4400305.
[31]
Li Y, Roell S. Key designs of a short-bore and cryogen-free hightemperature superconducting magnet system for 14T whole-bodyMR [J]. Supercond Sci Technol, 2021, 34: 125005-125005.
[32]
Awaji S, Watanabe K, Oguro H, et al. First performance test of a 25 Tcryogen-free super-conducting magnet[J]. Supercond Sci Technol, 2017, 30: 65000-65001.
[33]
孙钢. 超高场磁共振成像的发展现状与展望[J/OL]. 中华消化病与影像杂志(电子版), 2023, 13(6): 369-372.
[34]
Yan Y, Wang D, Zhu Y, et al. Progress of high-temperature superconducting joints[J]. Eur Phys J B, 2025, 98: 127.
[35]
Parkinson B. Design considerations and experimental results for MRI systems using HTS magnets[J]. Supercond Sci Technol, 2017, 30(1): 014009.
[36]
Yao C, Ma Y. Superconducting materials: Challenges and opportunities for large-scale applications[J]. iScience, 2021, 24(6): 102541.
[37]
Law JY, Moreno-Ramirez LM, Diaz-Garcia A, et al. Current perspective in magnetocaloric materials research[J]. J Appl Phys, 2023, 133(4): 040903.
[38]
Cooper BE, Chase S, Namburi D, et al. Optimal leveraging of a Gifford-McMahon cryocooler's regenerative cooling power for SNSPD applications[C]. 2024 IOP Conf Ser Mater Sci Eng, 1301 012151.
[39]
Zhu M, Cheng W, Hua Z, et al. Thermal Loss Analysis, Design, and Test of a Novel HTS Magnet System for the Double-Stator Field-Modulation HTS Electrical Machine[J]. IEEE Trans Appl Supercon, 2023, 33(6): 1-10.
[1] 侯超, 夏纪筑, 李明星, 何文, 张巍. TCS-MR融合成像揭示帕金森病黑质高回声的空间分布特征[J/OL]. 中华医学超声杂志(电子版), 2025, 22(10): 944-954.
[2] 王颉, 陈明亮, 谷成毅, 柳金浪, 段志豪, 蔡相权, 徐智璇, 徐留海, 田志鹏, 周游. MRI评估慢性踝关节不稳患者轴位像距骨和腓骨位置[J/OL]. 中华关节外科杂志(电子版), 2025, 19(03): 315-322.
[3] 刘赛, 廖怡, 贾凤林, 李学胜, 马鑫茂, 李珮, 宁刚, 曲海波. MRI磁化准备快速采集梯度回波序列对儿童脑发育的定量评估作用[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(04): 411-419.
[4] 翟羽翔, 陈仁吉. 语音治疗对非综合征型唇腭裂言语障碍患者大脑神经网络影响的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(06): 418-423.
[5] 王明媚, 李勇. 肾盂癌的影像诊断及进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 412-417.
[6] 张嘉炜, 吴宇光, 余维东, 陈江明, 杨诚, 熊茂明. 前列腺MRI参数及临床因素与机器人前列腺癌根治术后腹股沟疝发生的相关性研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(03): 258-264.
[7] 戴宗伯, 张城硕, 郭庭维, 何知远, 赵昊宇, 张宇慈, 张佳林. 基于MRI影像组学机器学习构建肝细胞癌微血管侵犯预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2026, 15(01): 36-44.
[8] 李健文, 陈莹, 陈羲, 宗晓丹. 钆塞酸二钠增强MRI在高分化小肝癌和不典型增生结节鉴别诊断中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 875-881.
[9] 鲁莽, 马晓璐, 沈浮, 王颢, 邵成伟, 张卫, 陆建平, 陆海迪. 基于磁共振的深度学习重建方法在直肠癌术前评估中的应用研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(05): 445-456.
[10] 蔡湘龙, 单煜恒, 张娜, 梁佳敏, 李国强. 急性敌草快中毒致渗透性髓鞘溶解综合征两例并文献复习[J/OL]. 中华重症医学电子杂志, 2025, 11(03): 315-322.
[11] 何源青, 郭雷明, 冯佩, 马春宁, 岳欣. 钆塞酸二钠增强MRI多模态参数与原发性肝癌患者病情程度的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 317-325.
[12] 赵欣, 李昊昌, 赵海玥, 房秀霞, 卫星彤. 超声联合X线摄影和MRI对肿块型和非肿块型乳腺病变的诊断价值[J/OL]. 中华临床医师杂志(电子版), 2025, 19(10): 758-766.
[13] 周志艺, 杨芷怡, 严俊, 赵雪飘, 曲云, 岳永飞. 胎盘体积、胎盘面积和宫颈长度预测胎盘植入的价值[J/OL]. 中华产科急救电子杂志, 2025, 14(03): 167-172.
[14] 张双, 樊清语, 田雅乐, 柏福运, 贾岩龙. 肝脏乏脂肪型血管周上皮样细胞肿瘤的影像学特征[J/OL]. 中华诊断学电子杂志, 2025, 13(02): 97-102.
[15] 芮春朵, 沈海林, 杜红娣, 邱志富, 于乐林, 李振凯, 叶娟. 多模态磁共振成像技术在食蟹猴脑缺血再灌注模型建立中的应用价值[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(06): 526-531.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?