| [1] |
Banno N. Low-temperature superconductors: Nb3Sn, Nb3Al, and NbTi[J]. Superconductivity, 2023, 6: 100047.
|
| [2] |
Qin MJ, Xu X, Shi XD. High-temperature superconductors, Editor(s): Tapash Chakraborty, Encyclopedia of Condensed Matter Physics(Second Edition)[M]. Academic Press, 2024: 565-579.
|
| [3] |
Luo C, Liu G, Deng Y, et al. Design and optimization of liquid helium-free cooling systems for magnetic resonance imaging device using multi-physical modeling[J]. Case Studies in Thermal Engineering, 2025, 66: 105761.
|
| [4] |
Mahesh M, Barke PB. The MRI Helium Crisis: Past and Future[J]. J Am Coll Radiol, 2016, 13(12): 1536-1537.
|
| [5] |
Mukhatov A. A comprehensive review on magnetic imaging techniques for biomedical applications[J]. Nano Select, 2023. 4(3): 213-230.
|
| [6] |
Cao Q, Li Y, Fang C, et al. Status quo and utilization trend of global helium resources[J]. Front Environ Sci, 2022, 10: 1028471.
|
| [7] |
Yang RY, He YY, Li WT. Global Helium Supply and Helium Supply Safety for China[C]//International Field Exploration and Development Conference. Springer: Singapore, 2024.
|
| [8] |
Siddhantakar A, Santillán-Saldivar J, Kippes T, et al. Helium resource global supply and demand: Geopolitical supply risk analysis [J]. Resources, Conservation and Recycling, 2023, 193: 106935.
|
| [9] |
凌辉, 周勇义, 张黎伟, 等. 氦资源对科学仪器及科研项目的影响与对策[J]. 科学管理研究, 2012, 30(6): 4.
|
| [10] |
Kabasawa H. MR Imaging in the 21st Century: Technical Innovation over the First Two Decades[J]. Magn Reson Med Sci, 2022, 21: 71-82.
|
| [11] |
Cosmus TC, Parizh M. Advances in Whole-Body MRI Magnets[J]. IEEE Trans Appl Supercond, 2010, 9: 2104-2109.
|
| [12] |
GB 8958-2006缺氧危险作业安全规程[S]. 北京: 中国国家标准化管理委员会, 2006.
|
| [13] |
O'Reilly T, Webb A. Deconstructing and reconstructing MRI hardware [J]. J Magn Reson, 2019, 306: 134-138.
|
| [14] |
Jimeno MM, Vaughan JT, Geethanath S. Superconducting magnet designs and MRI accessibility: A review[J]. NMR Biomed, 2023, 36(9): e4921-e4921.
|
| [15] |
Cosmus TC, Parizh M, AMorrow G. Progress in MRI magnets[J]. IEEE Trans Appl Supercond, 2000, 10: 744-751.
|
| [16] |
Lvovsky Y, Jarvis P. Superconducting systems for MRI—Present solutions and new trends[J]. IEEE Trans Appl Supercond, 2005, 15: 1317-1325.
|
| [17] |
Bagdinov A, Demikhov E, Kostrov E, et al. Performance test of 1.5T cryogen-free orthopedic MRI magnet[J]. IEEE Trans Appl Supercon, 2017, 28(99): 1-4.
|
| [18] |
Rybakov A, Bagdinov A, Demikhov E, et al. 1.5T Cryogen Free Superconducting Magnet for Dedicated MRI[J]. IEEE Trans Appl Supercon, 2016, 26(4): 1-3.
|
| [19] |
O'Reilly T, Webb A. Deconstructing and reconstructing MRI hardware[J]. J Magn Reson, 2019, 306: 134-138.
|
| [20] |
Nazi A, Ali Chaudhry M, Nadeem B, et al. Global helium shortage leading to the shutting of imaging modalities is the world’s next medical crisis-driving factors, future of helium-free magnetic resonance imaging systems, and alternatives to magnetic resonance imaging[J]. Int J Surg: Global Health, 2023, 6: e0155.
|
| [21] |
Qu H, Wu H, Feng Z, et al. Thermal Analysis of the 4 K Cryostat Within a 1.5T Conduction-Cooled Superconducting Magnet for Whole-Body MRI Application[J]. IEEE Trans Appl Supercon, 2024, 34: 1-5.
|
| [22] |
Wang Y, Wang S, Liang P, et al. Design, construction and performance testing of a 1.5T cryogen-free low-temperature superconductor whole-body MRI magnet[J]. Supercond Sci Technol, 2023, 36: 045002.
|
| [23] |
GB/T 1048-2019管道元件公称压力的定义和选用[S]. 北京: 中国国家标准化管理委员会, 2019.
|
| [24] |
慧娴. 研发MRI无氦超导磁体的可行性及技术要点[J]. 中国医疗器械杂志, 2018, 42(5): 345-349.
|
| [25] |
Baig T, Yao Z, Doll D, et al. Conduction cooled magnet design for 1.5T, 3.0T and 7.0 T MRI systems[J]. Supercond Sci Technol, 2014, 27(12): 125012.
|
| [26] |
Dai Y, Yan L, Zhao B, et al. Tests on a 6T Conduction-Cooled Superconducting Magnet[J]. IEEE Trans Appl Supercon, 2006, 16(2): 961-964.
|
| [27] |
Liang Q, Li Y, Wang Q. Cryogenic Oscillating Heat Pipe for Conduction-Cooled Superconducting Magnets[J]. IEEE Trans Appl Supercon, 2018, 28(3): 1-5.
|
| [28] |
Xu Z, Wang H, Feng Z, et al. Design and simulation of a 7.0T conduction cooled superconducting magnet[J]. Sci Rep, 2025, 15(1): 15699.
|
| [29] |
Baig T, Amin AA, Deissler RJ, et al. Conceptual designs of conduction cooled MgB2 magnets for 1.5 and 3.0T full body MRI systems[J]. Supercond Sci Technol, 2017, 30(4): 043002.
|
| [30] |
Kim HS, Kovacs C, Rindfleisch M, et al. Demonstration of a conduction cooled react and wind MgB2 coil segment for MRI applications[J]. IEEE Trans Appl Supercon, 2016, 26(4): 4400305.
|
| [31] |
Li Y, Roell S. Key designs of a short-bore and cryogen-free hightemperature superconducting magnet system for 14T whole-bodyMR [J]. Supercond Sci Technol, 2021, 34: 125005-125005.
|
| [32] |
Awaji S, Watanabe K, Oguro H, et al. First performance test of a 25 Tcryogen-free super-conducting magnet[J]. Supercond Sci Technol, 2017, 30: 65000-65001.
|
| [33] |
孙钢. 超高场磁共振成像的发展现状与展望[J/OL]. 中华消化病与影像杂志(电子版), 2023, 13(6): 369-372.
|
| [34] |
Yan Y, Wang D, Zhu Y, et al. Progress of high-temperature superconducting joints[J]. Eur Phys J B, 2025, 98: 127.
|
| [35] |
Parkinson B. Design considerations and experimental results for MRI systems using HTS magnets[J]. Supercond Sci Technol, 2017, 30(1): 014009.
|
| [36] |
Yao C, Ma Y. Superconducting materials: Challenges and opportunities for large-scale applications[J]. iScience, 2021, 24(6): 102541.
|
| [37] |
Law JY, Moreno-Ramirez LM, Diaz-Garcia A, et al. Current perspective in magnetocaloric materials research[J]. J Appl Phys, 2023, 133(4): 040903.
|
| [38] |
Cooper BE, Chase S, Namburi D, et al. Optimal leveraging of a Gifford-McMahon cryocooler's regenerative cooling power for SNSPD applications[C]. 2024 IOP Conf Ser Mater Sci Eng, 1301 012151.
|
| [39] |
Zhu M, Cheng W, Hua Z, et al. Thermal Loss Analysis, Design, and Test of a Novel HTS Magnet System for the Double-Stator Field-Modulation HTS Electrical Machine[J]. IEEE Trans Appl Supercon, 2023, 33(6): 1-10.
|