切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2026, Vol. 16 ›› Issue (01) : 6 -12. doi: 10.3877/cma.j.issn.2095-2015.2026.01.002

论著

MRI动态增强扫描联合CT能谱成像对肝细胞癌微血管侵犯的预测价值
王甜, 张勇(), 李苗红, 刘佳玥   
  1. 225000 江苏省,扬州大学附属医院放射科
  • 收稿日期:2025-09-04 出版日期:2026-02-01
  • 通信作者: 张勇

Predictive value of dynamic contrast-enhanced MRI combined with spectral CT for microvascular invasion of hepatocellular carcinoma

Tian Wang, Yong Zhang(), Miaohong Li, Jiayue Liu   

  1. Department of Radiology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, China
  • Received:2025-09-04 Published:2026-02-01
  • Corresponding author: Yong Zhang
引用本文:

王甜, 张勇, 李苗红, 刘佳玥. MRI动态增强扫描联合CT能谱成像对肝细胞癌微血管侵犯的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2026, 16(01): 6-12.

Tian Wang, Yong Zhang, Miaohong Li, Jiayue Liu. Predictive value of dynamic contrast-enhanced MRI combined with spectral CT for microvascular invasion of hepatocellular carcinoma[J/OL]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2026, 16(01): 6-12.

目的

探讨磁共振动态增强扫描(DCE-MRI)联合CT能谱成像对肝细胞癌微血管侵犯(MVI)的预测价值。

方法

回顾性分析2022年1月至2024年12月扬州大学附属医院收治的肝细胞癌患者90例的临床资料,所有患者均行DCE-MRI联合能谱CT扫描检查,根据病理检查MVI情况将患者分为两组,MVI组(n=41)和无MVI组(n=49),收集两组资料,构建受试者工作特征(ROC)曲线,计算曲线下面积(AUC)评估DCE-MRI和能谱CT单独及联合应用对MVI的预测效能。

结果

MVI组的表观弥散系数(ADC)、血管外细胞外间隙体积百分比(Ve)低于无MVI组,速率常数(Kep)、容积转移常数(Ktrans)、标准化碘浓度(NIC)、动脉期能谱曲线斜率(λHU)、门静脉期λHU高于无MVI组,差异均有统计学意义(P<0.05)。多因素Logistic分析显示,ADC(OR=0.099,95% CI 0.028~0.348)、VeOR=0.145,95% CI 0.045~0.469)是肝细胞癌MVI的独立保护因素;而KepOR=6.524,95% CI 2.341~18.181)、KtransOR=8.197,95% CI 2.594~25.900)、动脉期NIC(OR=24.915,95% CI 5.386~115.274)、动脉期λHU(OR=4.678,95% CI 1.915~11.429)及门静脉期λHU(OR=2.440,95% CI 1.157~5.145)是肝细胞癌MVI的独立危险因素(P<0.05)。其中动脉期NIC的OR值最高,提示其对MVI的预测价值最大。ROC曲线分析显示,各单一参数中对MVI预测效能最高的为动脉期NIC(AUC=0.873,95% CI 0.809~0.937),其次为Ktrans(AUC=0.834,95% CI 0.761~0.907)和ADC值(AUC=0.812,95% CI 0.732~0.892)。将上述有统计学意义的独立预测因素构建联合预测模型后,其预测效能显著提高(AUC=0.902,95% CI 0.886~0.978),灵敏度为90.24%,特异性为87.76%。

结论

DCE-MRI联合能谱CT有助于术前预测肝细胞癌MVI情况,其诊断效能优于任何单一模态,可为临床手术策略的选择及预后评估提供关键信息支持。

Objective

To explore the predictive value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) combined with spectral CT for microvascular invasion (MVI) of hepatocellular carcinoma.

Methods

A retrospective analysis was conducted on the clinical data of 90 patients with hepatocellular carcinoma admitted to Affiliated Hospital of Yangzhou University from January 2022 to December 2024. All patients underwent DCE-MRI combined with spectral CT scan examination. According to the MVI situation in pathological examination, the patients were divided into two groups: the MVI group (n=41) and the non-MVI group (n=49). Two groups of data were collected, the receiver operating characteristic (ROC) curve was constructed, and the AUC was calculated to evaluate the predictive efficacy of DCE-MRI and spectral CT alone and in combination for MVI.

Results

The apparent diffusion coefficient (ADC) and the percentage of extracellular space outside blood vessel (Ve) in the MVI group were lower than those in the non-MVI group, while the rate constant (Kep), the volume transfer constant (Ktrans), the standardized iodine concentration (NIC) in the arterial phase, the slope of the energy spectrum curve (λHU) in the arterial phase, and λHU in the portal vein phase were higher than those in the non-MVI group, with statistically significant differences (P<0.05). Multivariate Logistic analysis showed that ADC (OR=0.099, 95% CI: 0.028-0.348) and Ve (OR=0.145, 95% CI: 0.045-0.469) were independent protective factors for MVI in hepatocellular carcinoma. While Kep (OR=6.524, 95% CI: 2.341-18.181), Ktrans (OR=8.197, 95% CI: 2.594-25.900), and arterial phase NIC (OR=24.915, 95% CI: (5.386-115.274), λHU in the arterial phase (OR=4.678, 95% CI: 1.915-11.429), and λHU in the portal vein phase (OR=2.440, 95% CI: 1.157-5.145) were independent risk factors for MVI in hepatocellular carcinoma (P<0.05). Among them, the OR value of NIC in the arterial phase was the highest, suggesting that it had the greatest predictive value for MVI. ROC curve analysis showed that among each single parameter, the one with the highest predictive efficacy for MVI was arterial phase NIC (AUC=0.873, 95% CI: 0.809-0.937), followed by Ktrans (AUC=0.834, 95% CI: (0.761-0.907) and ADC value (AUC=0.812, 95% CI: 0.732-0.892). After constructing a joint prediction model with the above-mentioned independent predictive factors of statistical significance, its predictive efficacy was significantly improved (AUC=0.902, 95% CI: 0.886-0.978), with a sensitivity of 90.24% and a specificity of 87.76%.

Conclusion

DCE-MRI combined with spectral CT is helpful for preoperative prediction of MVI in hepatocellular carcinoma, its diagnostic efficacy is superior to any single mode, providing key information support for the selection of clinical surgical strategies and prognosis evaluation.

图1 MRI动态增强扫描和能谱CT具有微血管侵犯典型特征的表现注:患者男,68岁,肝细胞癌。1A~1D MRI增强扫描后,病灶整体动脉期呈不均匀强化,门静脉期及延迟期内部强化程度低于肝实质,内部可见条片状低信号影;1E DWI弥散受限呈不均匀高信号;1F病理切片显示肝细胞呈单层或双层索状、管状结构,见血管侵犯;1G~1I CT增强扫描后,增强病灶整体动脉期呈不均匀强化,门脉期及延迟期内部强化减退,内可见条片状低密度影,边缘呈包膜样强化
表1 两组肝细胞癌患者MRI动态增强扫描、能谱CT检查情况(±s
表2 肝细胞癌微血管侵犯发生的多因素Logistic回归分析结果
图2 MRI动态增强扫描、能谱CT检查对肝细胞癌微血管侵犯的预测ROC曲线注:ADC表现弥散系数;Kep速率常数;Ktrans容积转移常数;Ve血管外细胞外间隙体积百分比;NIC标准化碘浓度;λHU动脉期能谱曲线斜率
表3 MRI动态增强扫描、能谱CT检查对肝细胞癌微血管侵犯的预后预测效能分析
[1]
陈晓辉, 吴淼, 陈宇驰, 等. 增强CT影像学征象联合判断肝细胞癌微血管侵犯的价值研究[J]. 中国医学装备, 2022, 19(3): 80-84.
[2]
Wang Y, Zhu GQ, Yang R, et al. Deciphering intratumoral heterogeneity of hepatocellular carcinoma with microvascular invasion with radiogenomic analysis[J]. J Transl Med, 2023, 21(1): 734.
[3]
张倍宁, 王江业, 颜克松, 等. 能谱CT联合肿瘤标志物检测在肝细胞癌患者TACE术后随访中的应用价值[J]. 中国普通外科杂志, 2025, 34(1): 160-165.
[4]
Wei G, Fang G, Guo P, et al. Preoperative prediction of microvascular invasion risk in hepatocellular carcinoma with MRI: peritumoral versus tumor region[J]. Insights Imaging, 2024, 15(1): 188.
[5]
Yang J, Dong X, Jin S, et al. Radiomics Model of Dynamic Contrast-Enhanced MRI for Evaluating Vessels Encapsulating Tumor Clusters and Microvascular Invasion in Hepatocellular Carcinoma[J]. Acad Radiol, 2025, 32(1): 146-156.
[6]
孟存忠, 赵帆. 钆塞酸二钠增强MRI列线图预测肝细胞癌微血管侵犯及危险分级[J]. 实用放射学杂志, 2025, 41(6): 979-983.
[7]
中国医师协会肝癌专业委员会. 肝细胞癌伴微血管侵犯诊断和治疗中国专家共识(2024版)[J/OL]. 中华普通外科学文献(电子版), 2024, 18(5): 313-324.
[8]
崔哲铭, 许嘉琪, 王甜甜, 等. DCE-MRI联合KDM6B、PD-L1在乳腺癌诊断及预后评估中的价值[J]. 分子诊断与治疗杂志, 2025, 17(2): 221-225.
[9]
匡嘉伟, 吴灵捷, 王宇喆, 等. 能谱CT鉴别慢性侵袭性真菌性鼻腔鼻窦炎和鼻腔鼻窦恶性肿瘤的应用研究[J]. 中国医学计算机成像杂志, 2025, 31(3): 345-349.
[10]
吕雪, 刘巧, 严敏, 等. 能谱CT容积定量参数术前预测肝细胞癌微血管侵犯[J]. 中国医学影像技术, 2023, 39(5): 700-704
[11]
程蛰承, 胡敏, 凌生泉, 等. 动态增强MRI术前预测肝细胞癌微血管浸润[J]. 中国介入影像与治疗学, 2024, 21(12): 767-771.
[12]
吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2023, 13(6): 404-408.
[13]
Liu G, Shen Z, Chong H, et al. Three-Dimensional Multifrequency MR Elastography for Microvascular Invasion and Prognosis Assessment in Hepatocellular Carcinoma[J]. J Magn Reson Imaging, 2024, 60(6): 2626-2640.
[14]
Zhu Y, Feng B, Wang P, et al. Bi-regional dynamic contrast-enhanced MRI for prediction of microvascular invasion in solitary BCLC stage A hepatocellular carcinoma[J]. Insights Imaging, 2024, 15(1): 149.
[15]
Wang C, Zhang T, Sun S, et al. Preoperative Contrast-Enhanced Ultrasound Predicts Microvascular Invasion in Hepatocellular Carcinoma as Accurately as Contrast-Enhanced MR[J]. J Ultrasound Med, 2024, 43(3): 439-453.
[16]
张歌, 钟淑媛, 胡根文, 等. 基于平扫MRI的影像组学及深度学习模型预测肝细胞癌微血管侵犯:一项双中心研究[J]. 实用放射学杂志, 2025, 41(3): 424-428.
[17]
Li YX, Li WJ, Xu YS, et al. Clinical application of dual-layer spectral CT multi-parameter feature to predict microvascular invasion in hepatocellular carcinoma[J]. Clin Hemorheol Microcirc, 2024, 88(1): 97-113.
[18]
Hwang SY, Danpanichkul P, Agopian V, et al. Hepatocellular carcinoma: updates on epidemiology, surveillance, diagnosis and treatment[J]. Clin Mol Hepatol, 2025, 31(Suppl): S228-S254.
[19]
Jang HJ, Choi SH, Wee S, et al. CT- and MRI-based Factors Associated with Rapid Growth in Early-Stage Hepatocellular Carcinoma[J]. Radiology, 2024, 313(3): e240961.
[20]
Yang J, Dong X, Jin S, et al. Radiomics Model of Dynamic Contrast-Enhanced MRI for Evaluating Vessels Encapsulating Tumor Clusters and Microvascular Invasion in Hepatocellular Carcinoma[J]. Acad Radiol, 2025, 32(1): 146-156.
[21]
吴瑞, 顾金凤, 陈芳云, 等. 术前AFP联合能谱CT对肝细胞癌微血管侵犯的预测价值[J]. 医学影像学杂志, 2023, 33(11): 2020-2025.
[22]
张剑锋, 张剑. 肝细胞癌微血管浸润诊治研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2022, 11(1): 104-108.
[23]
史佳丽, 徐媛, 郭钰, 等. 肝细胞癌微血管侵犯的影像学研究进展[J]. 磁共振成像, 2024, 15(2): 213-218.
[1] 卢瑞芳, 林欣欣, 王昱, 许芊芊, 吴少虹, 王伟, 陈立达, 程美清. 2023年美国肝病研究学会肝细胞癌筛查指南的验证研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(11): 1046-1054.
[2] 杨秀玲, 王文辉, 杨婕, 卢强. 双表型肝细胞癌与经典型肝细胞癌超声造影特征及危险因素分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 761-767.
[3] 顾怡君, 李奕冉, 钱艺, 蒋栋. 基于超声造影定量指标预测肝细胞癌微血管侵犯及评估其复发的研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 451-461.
[4] 孟竹达, 靳亚杰, 郝冉, 赵二鹏. MMIF与围手术期指标预测甲状腺全切术后甲状旁腺功能减退的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 678-681.
[5] 张珅瑜, 王继洲. 多灶性肝细胞癌的手术策略——外科医师视角[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(05): 264-270.
[6] 戴宗伯, 张城硕, 郭庭维, 何知远, 赵昊宇, 张宇慈, 张佳林. 基于MRI影像组学机器学习构建肝细胞癌微血管侵犯预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2026, 15(01): 36-44.
[7] 何泰霖, 王峻峰, 田林云, 王罡, 杨超, 王海峰. 基于CT影像组学构建肝细胞癌微血管侵犯预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2026, 15(01): 45-52.
[8] 林水荣, 宋子敏, 于玺, 李绍强, 华赟鹏, 沈顺利. 术前抗病毒治疗对HBV相关肝癌肝切除术后肝衰竭影响[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 700-706.
[9] 袁慧, 周芦忠, 汤鹤年, 潘菊花. LMR与PHR对射频消融术后肝细胞癌患者预后的评估[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 635-641.
[10] 朱永慧, 桑迪, 宋佳. 肝癌大范围肝切除患者术后骨骼肌减少的列线图预测模型构建及临床验证[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 467-473.
[11] 朱康, 郑潇, 张磊, 于娜. 超声造影及血清标志物检测对肝癌介入术后微血管侵犯及复发的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 474-479.
[12] 刘理冠, 严彦, 陈惠玲, 吴金票, 黄志杰, 徐涛, 李勇飞, 叶巧霞. IL-6、GP73和CK-18片段与单纯性肝囊肿临床特点的相关性及临床预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 486-491.
[13] 希龙夫, 李江涛. CXCL12及其受体CXCR4/CXCR7在肝脏相关疾病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(09): 714-719.
[14] 武世伦, 姚常玉, 许力, 狄治杉, 夏奇, 孙文兵, 孔健. 肿瘤相关巨噬细胞在肝细胞癌血管新生中的作用及研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 388-391.
[15] 刘鑫, 王文惠, 吴守振. 脓毒症相关急性胃肠损伤患者I-FABP、D-乳酸及炎症因子变化及意义[J/OL]. 中华卫生应急电子杂志, 2025, 11(06): 351-355.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?