切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2017, Vol. 07 ›› Issue (04) : 167 -171. doi: 10.3877/cma.j.issn.2095-2015.2017.04.006

所属专题: 文献

基础研究

纳米金-重组高密度脂蛋白分子造影剂的制备及表征分析
李江1, 秦健1, 朱建忠1,()   
  1. 1. 271000 山东泰安,泰山医学院附属医院医学影像科
  • 收稿日期:2016-06-13 出版日期:2017-08-01
  • 通信作者: 朱建忠
  • 基金资助:
    山东省自然科学基金资助项目(ZR2014HL085)

Preparation and characterization analysis of molecular contrast agent gold nanoparticle-recombinant high density lipoprotein

Jiang Li1, Jian Qin1, Jianzhong Zhu1,()   

  1. 1. Department of Medical Imaging, Affiliated Hospital of Taishan Medical University, Tai′an 271000, China
  • Received:2016-06-13 Published:2017-08-01
  • Corresponding author: Jianzhong Zhu
  • About author:
    Corresponding author: Zhu Jianzhong, Email:
引用本文:

李江, 秦健, 朱建忠. 纳米金-重组高密度脂蛋白分子造影剂的制备及表征分析[J]. 中华消化病与影像杂志(电子版), 2017, 07(04): 167-171.

Jiang Li, Jian Qin, Jianzhong Zhu. Preparation and characterization analysis of molecular contrast agent gold nanoparticle-recombinant high density lipoprotein[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2017, 07(04): 167-171.

目的

以纳米金粒子(gold nanoparticles,AuNPs)和重组高密度脂蛋白(recombinant high density lipoproteins,rHDL)为原料,制备纳米金-重组高密度脂蛋白(Au-rHDL)分子造影剂,并对其进行表征分析。

方法

利用化学还原法制备AuNPs,使其与rHDL相互作用,最终合成Au-rHDL复合物。对复合物进行紫外-可见光光谱(uv-visible absorption spectrum,UV-vis)分析、透射电子显微镜(transmission electron microscope,TEM)检测,并且与常规碘造影剂-碘海醇注射液(Omnipaque)进行X射线衰减度与体外CT成像对比。

结果

Au-rHDL具有良好的分散性及均一性,粒径大小约为12 nm;Au-rHDL复合物与碘海醇注射液相比,具有更高的X射线衰减度和更好的体外成像效果。

结论

Au-rHDL分子造影剂制备成功,为动脉粥样硬化斑块的分子靶向成像奠定了基础。

Objective

To produce the molecular contrast agent gold nanoparticle-recombinant high density lipoprotein(Au-rHDL), using gold nanoparticle(AuNP)and recombinant high density lipoprotein(rHDL)as raw materials, and to analyze the characterization of the agent.

Methods

The AuNP was prepared using chemical reduction method, and it interacted with rHDL to synthesize Au-rHDL complex.The comlex was analyzed and detected using uv-visible absorption spectrum(UV-vis)and transmission electron microscope(TEM). The X-ray attenuation and extracorporeal CT imaging of the complex were compared with the conventional iodine contrast agent Omnipaque.

Results

Au-rHDL had excellent character of dispersion and uniformity, and the particle size of the complex was 12 nm.The Au-rHDL complex had a higher attenuation of X-ray and a better effect of extracorporeal CT imaging, compared with Omnipaque.

Conclusion

The molecular contrast agent Au-rHDL is prepared successfully, which lays the foundation for the molecular targeted imaging of atherosclerotic plaque.

表1 纳米金粒子(AuNPs)与纳米金-重组高密度脂蛋白(Au-rHDL)制备及表征分析所用试剂
表2 纳米金粒子(AuNPs)与纳米金-重组高密度脂蛋白(Au-rHDL)制备及表征分析所需仪器
图1 纳米金-重组高密度脂蛋白(Au-rHDL)合成示意图
图2 纳米金粒子(AuNPs)与纳米金-重组高密度脂蛋白(Au-rHDL)复合物紫外吸收光谱图
图3 纳米金粒子(AuNPs)透射电子显微镜(TEM)照片
图4 纳米金-重组高密度脂蛋白(Au-rHDL)透射电子显微镜(TEM)照片
图5 纳米金-重组高密度脂蛋白(Au-rHDL)和碘海醇注射液(Omnipaque)的X射线
1
Shishehbor MH, Aviles RJ, Brennan ML, et al.Association of nitrotryrosine levels with cardiovascular disease and modulation by statin therapy[J]. JAMA, 2003, 289(13): 1675-1680.
2
Lai CT, Sun W, Palekar RU, et al.Computational and Experimental Studies of Gold Nanoparticle Templated HDL-Like Nanoparticles for Cholesterol Metabolism[J]. Biophysical J, 2017, 112(3): 140a.
3
Sanchez-Gaytan BL, Fay F, Lobatto ME, et al.HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages[J]. Bioconjug Chem, 2015, 26(3): 443-451.
4
Vijayakumar S. Stability and cytotoxicity studies on gold nanoparticles and medical applications[C]. Anna University, 2014.
5
Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, et al.Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice[J]. Biochem Biophys Res Commun.2010, 393(4): 649-655.
6
Brust M, Walker M, Bethell D, et al.Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system[J]. Chem Commun, 1994, 7: 801-802.
7
Yu XH, Fu YC, Zhang DW, et al.Foam cells in atherosclerosis[J]. Clin Chim Acta, 2013, 424: 245-252.
8
Feig JE, Shamir R, Fisher EA.Atheroprotective effects of HDL: Beyondreverse cholesterol transport[J]. Current Drug Targets, 2008, 9(3): 196-203.
9
Barter P, Kastelein J, Nunn A, et al.High density lipoproteins(HDLs)and atherosclerosis;the unanswered questions[J]. Atherosclerosis, 2003, 168(2): 195-211.
10
Chae Y K, Pan A, Scholtens D, et al.Abstract 3672: Expression patterns of scavenger receptor B-1(SR-B1)to guide biomimetic HDL gold nanoparticle therapy[J]. Cancer Res, 2015, 75(15 Supplement): 3672-3672.
11
Zheng G, Chen J, Li H. Glickson JD.Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents[J]. Proc Natl Acad Sci USA, 2005, 102(49): 17757-17762.
12
Xu C, Tung GA, Sun S. Size and Concentration Effect of Gold Nanoparticles on X-ray Attenuation As Measured on Computed Tomography[J]. Chem Mater, 2008, 20(13): 4167-4169.
13
Kim D, Park S, Lee JH, et al.Antibiofouling Polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging[J]. J Am Chem Soc, 2007, 129(24): 7661-7665.
14
王斯佳,王晶,梅建生,等.纳米金等离子共振特性在生物成像中的应用[J].科学通报,2013,58(7):510-516.
15
Li XY, Yang ZL, Zhou HG.Studying the absorption spectrum properties of the gold nanosphere--The effect of the size on the absorption spectra of the nanoparticles [J]. J Zhangzhou Teachers Coll(Nat Sci), 2004, 17: 31-34.
16
Wang ZJ, Wu LN, Cai W. Size-Tunable Synthesis of Monodisperse water-Soluble Gold Nanoparticles with High X-ray attenuation[J]. Chemistry, 2010, 16(5): 1459-1463.
17
李江,翟继良,张海静,等.心包脂肪体积与冠状动脉钙化积分对于冠状动脉狭窄诊断价值初步研究[J].实用放射学杂志,2013,29(6):917-920,932.
18
Wasserman MA, Rink J, Thaxton CS, et al.Synthetically Engineered High-Density Lipoprotein Gold Nanoparticles Target to Vascular Injury after Systemic Intravascular Administration[J]. J Am Col Surg, 2016, 223(4): S169.
[1] 马艳波, 华扬, 刘桂梅, 孟秀峰, 崔立平. 中青年人颈动脉粥样硬化病变的相关危险因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 822-826.
[2] 王友芳, 李兴超, 朱晓松, 刘清敏, 张建国, 杨淑红, 相然, 张蒙蒙, 车峰远. 预后营养指数对急性颅内动脉粥样硬化性大血管闭塞患者预后评估价值分析[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 193-197.
[3] 秦玲玲, 游兆媛, 丁舒, 王晓莉, 朱萌. 基于遗忘曲线规律的随访对冠状动脉粥样硬化性心脏病介入治疗患者自我管理行为的影响[J]. 中华危重症医学杂志(电子版), 2022, 15(06): 481-485.
[4] 谢恩睿, 段一璇, 刘畅, 邓捷. 利用随机森林联合人工神经网络基于外周血细胞易感基因建立冠心病诊断模型[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 19-26.
[5] 任丽, 吴锡骅, 刘婷, 梅益彰. 沉默LncRNA MEG3调控miR-424-5p/FoxO1对氧化型低密度脂蛋白诱导的动脉粥样硬化的保护机制[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 335-345.
[6] 徐敏, 赖仕峰, 罗娜, 李慧敏. 慢性肾衰竭患者颈动脉粥样硬化的评估及影响因素分析[J]. 中华肾病研究电子杂志, 2022, 11(06): 307-310.
[7] 刘宏达, 邵祥忠, 李林, 许小伟. 海安地区动脉粥样硬化性脑梗死患者CYP2C19基因多态性及与氯吡格雷抵抗的关系[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 234-240.
[8] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[9] 陶璐, 初楠, 韩洁, 白春英, 逄雯丽, 余海源. 血清PECAM-1、Sirt1水平与2型糖尿病患者颈动脉粥样硬化的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 291-296.
[10] 冯佳佳, 刘丹, 张广炜, 金丽霞. microRNA与脑动脉粥样硬化斑块破裂的研究新进展[J]. 中华临床医师杂志(电子版), 2022, 16(06): 601-604.
[11] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
[12] 熊鑫, 邓勇志. 基于血管内超声的机器学习在冠状动脉病变中的研究进展[J]. 中华诊断学电子杂志, 2023, 11(03): 153-157.
[13] 邱令智, 胡萍, 罗婷, 鄢华. 脂蛋白(a)与心房颤动关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 280-284.
[14] 林雨, 王艳玲. 颈动脉斑块易损性的评估与干预的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 66-69.
[15] 朱欣伟, 李俊林, 张建平, 包金岗, 吴日乐. 颈动脉斑块内出血影像学检查的应用进展[J]. 中华脑血管病杂志(电子版), 2022, 16(06): 427-431.
阅读次数
全文


摘要