切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2019, Vol. 09 ›› Issue (01) : 8 -13. doi: 10.3877/cma.j.issn.2095-2015.2019.01.003

所属专题: 专题评论 文献

临床研究

基于CT增强扫描图像的灰度直方图纹理分析评估胰腺癌分化程度
沈力1, 征锦1,(), 叶靖1, 朱庆强1, 徐圆1   
  1. 1. 225001 江苏省,扬州大学附属苏北人民医院影像科
  • 收稿日期:2018-10-11 出版日期:2019-02-01
  • 通信作者: 征锦

Feasibility study of evaluation of malignant degree of pancreatic cancer by grey histogram texture analysis based on CT contrast enhancement

Li Shen1, Jin Zheng1,(), Jing Ye1, Qingqiang Zhu1, Yuan Xu1   

  1. 1. Department of Medical Imaging, Northern Jiangsu People′s Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
  • Received:2018-10-11 Published:2019-02-01
  • Corresponding author: Jin Zheng
  • About author:
    Corresponding author: Zheng Jin, Email:
引用本文:

沈力, 征锦, 叶靖, 朱庆强, 徐圆. 基于CT增强扫描图像的灰度直方图纹理分析评估胰腺癌分化程度[J]. 中华消化病与影像杂志(电子版), 2019, 09(01): 8-13.

Li Shen, Jin Zheng, Jing Ye, Qingqiang Zhu, Yuan Xu. Feasibility study of evaluation of malignant degree of pancreatic cancer by grey histogram texture analysis based on CT contrast enhancement[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2019, 09(01): 8-13.

目的

探究CT增强图像灰度直方图纹理分析技术在术前评估胰腺癌恶性程度的可行性,评价灰度直方图参数和胰腺癌病理分级、分化程度的关系。

方法

回顾性分析扬州大学附属苏北人民医院术后病理证实的胰腺癌患者49例,其中高分化组27例,中-低分化组22例。选取2组肿瘤CT增强扫描静脉期横断位图像最大层面,采用Mazda软件勾画感兴趣区,并进行灰度直方图纹理分析,对高分化、中-低分化两组直方图特征参数进行统计分析。对有统计学意义的参数建立受试者工作特征曲线(receiver operating characterist,ROC),最终对各参数其诊断效能进行比较分析。此外,对差异有统计学意义的参数与高分化、中-低分化组别之间的相关性进行检测。

结果

采用灰度直方图分析提取的9个参数特征中,其中均值(Mean)、第1百分位数(Perc.01%)、第10百分位数(Perc.10%)、第50百分位数(Perc.50%)在高分化、中-低分化2组的差异有统计学意义(P<0.05),变异度(Variance)、偏度(Skewness)、峰度(Kurtosis)、第90百分位数(Perc.90%)、第99百分位数(Perc.99%)在2组中差异无统计学意义(P>0.05)。采用Spearman相关性分析可知均值、Perc.01%、Perc.10%、Perc.50%与分化程度之间呈正相关(r值分别为0.04、0.29、0.32、0.33,P均<0.05)。评估胰腺癌恶性程度时,均值的诊断效能最高(AUC=0.695);当均值取值147.27时,其对应的敏感度和特异度分别为86.4%、44.4%;当Perc.01%取值117时,其对应的敏感度和特异度分别为95.5%、40.7%;当Perc.10%取值120时,其对应的敏感度和特异度分别为72.7%、63%;当Perc.50%取值146时,其对应的敏感度和特异度分别为86.4%、44.4%。

结论

CT增强图像灰度直方图分析的特征参数在高分化、中-低分化胰腺癌之间存在差异,给术前评估胰腺癌恶性程度提供了新的方法。

Objective

To explore the feasibility of grey histogram texture analysis based on CT contrast enhancement in preoperative evaluation of the degree of malignancy of pancreatic cancer, and to evaluate the relationship between grey histogram parameters and pathological grade and differentiated degree of pancreatic cancer.

Methods

A total of 49 patients with postoperative pathology proven pancreatic cancer including high differentiation(27 cases)and low-moderate differentiation(22 cases)were analyzed retrospectively.Region of interest(ROI)was chosen at axial CT images with maximum enhancement of lesion and grey histogram analysis was performed using Mazda software.The histogram parameters were analyzed statistically in these two groups.Receiver operating characteristic(ROC)curve was established for parameters to compare diagnostic performance.In addition, the correlation was tested between parameters and groups.

Results

In the 9 parameters extracted from grey histogram analysis among the two groups, the mean value, Perc.01%, Perc.10%, Perc.50% had statistical differences(P<0.05), but variance, skewness, kurtosis, Perc.90%, Perc.99% had not statistical differences(P>0.05). Spearman correlation analysis showed that the mean value, Perc.01%, Perc.10%, Perc.50% were positively correlated with the differentiated degree(r values were 0.04, 0.29, 0.32 and 0.33 respectively, P<0.05). When evaluating malignant grade of pancreatic cancer, the diagnostic efficiency of the mean value was the highest(AUC=0.695). When the cutoff value was 147.27 for mean value, the sensitivity and specificity were 86.4% and 44.4%.When the cutoff value was 117 for Perc.01%, the sensitivity and specificity were 95.5% and 40.7%.When the cutoff value was 120 for Perc.10%, the sensitivity and specificity were 72.7% and 63%.When the cutoff value was 146 for Perc.50%, the sensitivity and specificity were 86.4% and 44.4%.

Conclusion

The characteristic parameters of gray histogram texture analysis based on CT enhanced images are different between high and low-moderate grade pancreatic cancer, providing a new method for preoperative evaluation of the degree of malignancy of pancreatic cancer.

图1 采用Mazda软件手动勾画ROI,尽量避开胰管、血管、坏死、囊变区域,软件自动生成灰度直方图纹理特征参数
表1 高分化、中-低分化胰腺癌灰度直方图参数比较( ±s)
表2 高分化、中-低分化胰腺癌灰度直方图参数比较(±s)
表3 灰度直方图参数与组别之间相关性
图2 由ROC曲线可知,均值曲线下面积为0.695,当均值取值147.27时,其对应的敏感度和特异度分别为86.4%、44.4%
图3 由ROC曲线可知,Perc.01%曲线下面积为0.670,当Perc.01%取值117时,其对应的敏感度和特异度分别为95.5%、40.7%
图4 由ROC曲线可知,Perc.10%曲线下面积为0.686,当Perc.10%取值120时,其对应的敏感度和特异度分别为72.7%、63%
图5 由ROC曲线可知,Perc.50%曲线下面积为0.694,当Perc.50%取值146时,其对应的敏感度和特异度分别为86.4%、44.4%
表4 灰度直方图参数对胰腺癌高分化、中-低分化的诊断效能
1
Jemal A, Thun MJ, Ries LA, et al.Annual report to the nation on the status of cancer, 1975-2005, featuring trends in lung cancer, tobacco use, and tobacco control[J].J Natl Cancer Inst, 2008, 100(23):1672-1694.
2
Schima W, Ba-Ssalamah A, K?lblinger C, et al.Pancreatic adenocarcinoma[J].Eur Radiol, 2007, 17(3):638-649.
3
朱玉春,周伟,张怀信,等.胰腺癌瘤体强化程度与其恶性度的对照分析[J].中国医学影像技术,2007,(11):1676-1679.
4
Rao S, Lambregts D, Schnerr R, et al.Whole-liver CT texture analysis in colorectal cancer:Does the presence of liver metastases affect the texture of the remaining liver?[J].United European Gastroenterol J, 2014, 2(6):530-538.
5
Yan L, Liu Z, Wang G, et al.Angiomyolipoma with minimal fat:differentiation from clear cell renal cell carcinoma and papillary renal cell carcinoma by texture analysis on CT images[J].Acad Radiol, 2015, 22(9):1115-1121.
6
Hanania AN, Bantis LE, Feng Z, et al.Quantitative imaging to evaluate malignant potential of IPMNs[J].Oncotarget, 2016, 7(52):85776-85784.
7
Pereira J, Rosado E, Bali M, et al.Pancreatic neuroendocrine tumors:correlation between histogram analysis of apparent diffusion coefficient maps and tumor grade[J].Abdominal Imaging, 2015, 40(8):3122-3128.
8
Choi TW, Kim JH, Yu MH, et al.Pancreatic neuroendocrine tumor:prediction of the tumor grade using CT findings and computerized texture analysis[J].Acta Radiologica, 2018, 59(4):383-392.
9
Torheim T, Malinen E, Kvaal K, et al.Classification of dynamic contrast enhanced MR images of cervical cancers using texture analysis and support vector machines[J].IEEE Trans Med Imaging, 2014, 33(8):1648-56.
10
马婉玲,魏梦绮,任静,等.体素内不相干运动扩散加权成像定量参数评估胰腺癌的分化程度[J].中国医学影像学杂志,2017,25(9):658-661.
11
方军,李兆申.晚期胰腺癌内镜诊治研究进展[J/CD].中华消化病与影像杂志(电子版),2012,2(2):188-190.
12
Kumar S, Yuning L, Michael A-S, et al.CT texture analysis of pancreatic cancer[J].Eur Radiol, 2018.
13
Ng F, Ganeshan B, Kozarski R, et al.Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis:contrast-enhanced CT texture as a biomarker of 5-year survival[J].Radiology, 2013, 266(1):177-184.
14
Davnall F, Yip C, Ljungqvist G, et al.Assessment of tumor heterogeneity:an emerging imaging tool for clinical practice?[J].Insights Imaging, 2012, 3(6):573-589.
15
Canellas R, Burk K, Parakh A, et al.Prediction of pancreatic neuroendocrine tumor grade based on CT features and texture analysis[J].AJR Am J Roentgenol, 2018, 210(2):341-346.
16
Jiali L, Jingyu L, Ping L, et al.Differentiation of atypical pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinomas:Using whole-tumor CT texture analysis as quantitative biomarkers[J].Cancer Med, 2018, 7(10):4924-4931.
17
Sasson A, Wetherington R, Hoffman J, et al.Neoadjuvant chemoradiotherapy for adenocarcinoma of the pancreas:analysis of histopathology and outcome[J].Int J Gastrointest Cancer, 2003, 34(2/3):121-128.
18
Muraoka N, Uematsu H, Kimura H, et al.Apparent diffusion coefficient in pancreatic cancer:characterization and histopathological correlations[J].J Magn Reson Imaging, 2008, 27(6):1302-1308.
19
Jaster R, Emmrich J.Crucial role of fibrogenesis in pancreatic diseases[J].Best Pract Res Clin Gastroenterol, 2008, 22(1):17-29.
20
郭堑,农村立,龙腾河.图像纹理分析技术在肝纤维化CT图像分析中的应用研究进展[J].实用肝脏病杂志,2009,12(3):229-231.
21
陈瑾,王海屹,叶慧义.纹理分析在肿瘤影像学中的研究进展[J].中华放射学杂志,2017,51(12):979-982.
22
丁玖乐,陈蕾,孙玲玲,等.VX2瘤在不同CT机型下常规腹部扫描的纹理分析差异及预处理评价[J].中国医学影像学杂志,2018,26(1):7-10.
23
Watanabe H, Kanematsu M, Tanaka K, et al.Fibrosis and postoperative fistula of the pancreas:correlation with MR imaging findings--preliminary results[J].Radiology, 2014, 270(3):791-799.
24
王中秋,黎介寿,卢光明,等.胰腺癌的CT增强和瘤体微血管密度及病理分级的相关性研究[J].中华医学杂志,2003,83(21):46-50.
25
史讯,曾蒙苏,张志勇,等.胰腺癌胰实质期增强MSCT表现与病理的对照研究[J].放射学实践,2008,23(8):897-900.
[1] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[2] 魏忠玲, 陈赟, 叶美霞, 杨珺雯, 袁竺方. 不同种类敷料治疗糖尿病足疗效比较的网状荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 157-165.
[3] 尚培中, 张润萍, 张伟, 贾国洪, 李晓武, 苗建军, 刘冰. 梗阻性黄疸临床防治新技术单中心应用研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 104-107.
[4] 张彬霞, 王宁, 李端芳, 刘勇, 陈珍珍. 新型冠状病毒肺炎患者分级评估及康复治疗研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 912-915.
[5] 王勤运, 许大彬, 张恩犁, 钱海, 赵之明. 完全脏器转位机器人胰十二指肠切除术一例[J]. 中华腔镜外科杂志(电子版), 2023, 16(01): 52-55.
[6] 李新雄, 张再重, 赵虎, 肖春红, 王烈. 作为胰腺癌生物标志物的外泌体内容物研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 53-57.
[7] 朱任飞, 冯秋琪, 肖锋, 陈志, 杨帆. Clavien-Dindo分级和并发症综合指数在高龄肝癌肝切除术安全性评估中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 312-316.
[8] 胡刚, 刘军广, 邱文龙, 梅世文, 权继传, 庄孟, 汤坚强, 王锡山. 腹腔镜直肠癌经括约肌间切除术后Clavien- Dindo Ⅱ级及以上并发症的危险因素及其对预后的影响[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 296-302.
[9] 黄志毅, 赵娟. 重复经颅磁刺激联合分级运动想象训练对脑梗死后偏瘫患者运动功能及神经功能的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 102-107.
[10] 张寒, 丁涟沭. CT联合征象及纹理分析在预测自发性脑出血血肿扩大中的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 242-246.
[11] 曹文玺, 陈箫, 竺来法, 周永平. 尼妥珠单抗联合白蛋白结合型紫杉醇治疗胰腺癌的有效性及安全性分析[J]. 中华临床医师杂志(电子版), 2023, 17(04): 409-413.
[12] 陈小央, 彭国雏, 胡建江, 朱炜, 谢枫, 李骏, 任菁菁. “社区慢病联合门诊”助力医防融合的现状与展望[J]. 中华临床医师杂志(电子版), 2022, 16(12): 1166-1168.
[13] 任刚, 沈光凯, 王颖杰. 胰腺癌消融放疗的研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(12): 1276-1279.
[14] 任刚, 沈光凯, 宋佳钊, 李晶, 王勇, 王颖杰. 高剂量少分次放疗对胰腺癌患者免疫功能、营养及体力状态的影响[J]. 中华临床医师杂志(电子版), 2022, 16(09): 876-880.
[15] 陈升鑫, 翟亚奇, 卜保国, 陈德鑫, 吴浪, 方开萱, 刘文静, 李明阳, 令狐恩强. 自身免疫性胰腺炎临床特征分析[J]. 中华胃肠内镜电子杂志, 2023, 10(01): 46-51.
阅读次数
全文


摘要