1 |
Haldorsen I, Espeland A, Larsson E. Central nervous system lymphoma: characteristic findings on traditional and advanced imaging [J]. AJNR Am J Neuroradiol, 2011, 32(6): 984-992.
|
2 |
Küker W, Nägele T, Korfel A, et al. Primary central nervous system lymphomas (PCNSL): MRI features at presentation in 100 patients [J]. J Neurooncol, 2005, 72(2): 169-177.
|
3 |
Ma J, Kim H, Rim N, et al. Differentiation among glioblastoma multiforme, solitary metastatic tumor, and lymphoma using whole-tumor histogram analysis of the normalized cerebral blood volume in enhancing and perienhancing lesions [J]. AJNR Am J Neuroradiol, 2010, 31(9): 1699-1706.
|
4 |
Toh C, Castillo M, Wong A, et al. Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging [J]. AJNR Am J Neuroradiol, 2008, 29(3): 471-475.
|
5 |
Chawla S, Zhang Y, Wang S, et al. Proton magnetic resonance spectroscopy in differentiating glioblastomas from primary cerebral lymphomas and brain metastases [J]. J Comp Assist Tomogr, 2010, 34(6): 836-841.
|
6 |
Wang S, Kim S, Chawla S, et al. Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging [J]. AJNR Am J Neuroradiol, 2011, 32(3): 507-514.
|
7 |
Soni N, Priya S, Bathla G. Texture analysis in cerebral gliomas: a review of the literature [J]. AJNR Am J Neuroradiol, 2019, 40(6): 928-934.
|
8 |
Gulsen S. Achieving higher diagnostic results in stereotactic brain biopsy by simple and novel technique [J]. Open Access Maced J Med Sci, 2015, 3(1): 99-104.
|
9 |
Gutman D, Cooper L, Hwang S, et al. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set [J]. Radiology, 2013, 267(2): 560-569.
|
10 |
Naveed MA, Goyal P, Malhotra A, et al. Grading of oligodendroglial tumors of the brain with apparent diffusion coefficient, magnetic resonance spectroscopy, and dynamic susceptibility contrast imaging [J]. Neuroradiol J, 2018, 31(4): 379-385.
|
11 |
王敏红,周理想,冯湛. 常规MRI纹理分析鉴别脑胶质母细胞瘤和原发性中枢神经系统淋巴瘤的价值 [J]. 中国癌症杂志, 2019, 29(4): 284-288.
|
12 |
王敏红,冯湛. 瘤周水肿常规MRI纹理分析鉴别脑胶质母细胞瘤和单发转移瘤的价值 [J]. 中华放射学杂志, 2018, 52(10): 756-760.
|
13 |
尹浩霖,李冬宝,蒋宇,等. 高通量纹理分析鉴别脑内单发转移瘤和高级别胶质瘤 [J]. 中华肿瘤杂志, 2018, 40(11): 841-846.
|
14 |
Liu Y, Zhang X, Feng N, et al. The effect of glioblastoma heterogeneity on survival stratification: a multimodal MR imaging texture analysis [J]. Acta Radiol, 2018, 59(10): 1239-1246.
|
15 |
朱宗明,冯银波,陶广宇,等. 基于CT图像纹理分析方法对胸段食管癌术前T分期的研究价值 [J]. 临床放射学杂志, 2019, 38(1): 72-76.
|
16 |
Ng F, Ganeshan B, Kozarski R, et al. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival [J]. Radiology, 2013, 266(1): 177-184.
|
17 |
任继亮,袁瑛,董迪,等. 术前表观扩散系数图纹理分析预测舌和口底鳞状细胞癌组织学分级的价值 [J]. 中华放射学杂志, 2019, 53(4): 281-285.
|
18 |
钟熹,江魁明,麦慧,等. 基于灰度共生矩阵的MRI纹理分析预测舌癌患者颈部淋巴结转移的价值初探 [J]. 中华放射学杂志, 2018, 52(9): 649-654.
|
19 |
曹崑,刘慧,赵博,等. 早期增强MRI纹理特征分析对乳腺癌新辅助化疗后病理完全缓解的判断能力 [J]. 中华放射学杂志, 2018, 52(7): 523-527.
|
20 |
张竹伟,华婷,徐婷婷,等. 常规MRI纹理分析鉴别乳腺良、恶性病变的价值初探 [J]. 中华放射学杂志, 2017, 51(8): 588-591.
|