切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2021, Vol. 11 ›› Issue (02) : 61 -66. doi: 10.3877/cma.j.issn.2095-2015.2021.02.004

所属专题: 文献

临床研究

增强磁共振成像纹理参数对胶质母细胞瘤、原发性中枢神经系统淋巴瘤和单发转移瘤的鉴别诊断价值
刘娟1, 朱吉高1, 王立兴1, 沈力1, 傅剑雄1,()   
  1. 1. 225001 江苏扬州,苏北人民医院影像科
  • 收稿日期:2020-06-06 出版日期:2021-04-01
  • 通信作者: 傅剑雄

Value of magnetic resonance imaging texture parameters in differentiating brain glioblastoma, primary central nervous system lymphoma and single metastatic tumor

Juan Liu1, Jigao Zhu1, Lixing Wang1, Li Shen1, Jianxiong Fu1,()   

  1. 1. Department of Medical Imaging, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
  • Received:2020-06-06 Published:2021-04-01
  • Corresponding author: Jianxiong Fu
引用本文:

刘娟, 朱吉高, 王立兴, 沈力, 傅剑雄. 增强磁共振成像纹理参数对胶质母细胞瘤、原发性中枢神经系统淋巴瘤和单发转移瘤的鉴别诊断价值[J]. 中华消化病与影像杂志(电子版), 2021, 11(02): 61-66.

Juan Liu, Jigao Zhu, Lixing Wang, Li Shen, Jianxiong Fu. Value of magnetic resonance imaging texture parameters in differentiating brain glioblastoma, primary central nervous system lymphoma and single metastatic tumor[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2021, 11(02): 61-66.

目的

探讨增强MRI纹理参数鉴别胶质母细胞瘤(GBM)、原发性中枢神经系统淋巴瘤(PCNSLs)及单发转移瘤(sMT)的可行性。

方法

回顾性分析2016年1月至2018年9月苏北人民医院收治的经手术或穿刺活检病理确诊的30例GBM、20例PCNSLs及21例sMT患者。应用Mazda软件勾画病灶感兴趣区并提取297个纹理参数,应用Fisher系数、分类错误联合平均相关系数提取(POE+ACC)、交互信息(MI)及三者联合FPM提取法筛选出30个特征参数。计算组内相关系数(ICC)评价观察者间测量纹理参数的一致性。比较GBM、PCNSLs和sMT纹理参数差异。将30个纹理参数纳入b11数据包进行原始数据分析(RDA)、主成分分析(PCA)、线性判别分析(LDA)、非线性判别分析(NDA)统计。

结果

两名观察者测量30个纹理参数的ICC为0.813~0.892,均≥0.75,表现出良好的一致性。30个纹理参数中,仅S(4,4)SumAverg、Teta3在GBM、sMT和PCNSLs这3种肿瘤间的差异无统计学意义(P均>0.05),其余参数在这3种肿瘤间的差异均有统计学意义(P均<0.05或0.01)。b11数据包RDA、PCA、LDA、NDA这4种分析法诊断正确例数分别为41例、40例、67例、62例,诊断准确率分别为57.8%、56.3%、94.4%、87.3%。其中,NDA分析法诊断准确率最高。

结论

增强MRI能够提取定量纹理参数,有助于鉴别脑胶质母细胞瘤、原发性淋巴瘤及单发转移瘤。

Objective

To investigate the feasibility of magnetic resonance imaging (MRI) texture parameters in differentiating glioblastomas (GBM), primary cerebral lymphomas (PCNSLs) and single metastatic tumor (sMT).

Methods

A total of 30 cases of GBM, 20 cases of PCNSLs and 21 cases of sMT pathologically confirmed by surgery or needle biopsy were analyzed retrospectively. Delineation of region of interest (ROI) and extraction of 297 texture parameters were performed by using Mazda software. Thirty texture parameters were selected by the joint extraction method of FPM (Fisher, POE+ACC and MI). Intraclass correlation coefficient (ICC) was analyzed to test the consistency of two observers. The texture parameters of GBM, PCNSLs and sMT were compared. Thirty texture parameters were included in b11 data packets for raw data analysis (RDA), principal component analysis (PCA), linear analysis (LDA) and nonlinear analysis (NDA).

Results

The ICC of 30 texture parameters measured by the two observers was 0.813-0.892, all≥0.75, showing good consistency. Among the 30 texture parameters, only S(4,4)SumAverg and Teta3 had no significant statistical difference (both P>0.05) but the other parameters had significant difference among the three kinds of tumors (all P<0.05 or 0.01). The correct diagnosis cases of RDA, PCA, LDA and NDA by b11 packet analysis were 41, 40, 67 and 62 respectively, and the correct rates were 57.8%, 56.3%, 94.4% and 87.3%, respectively. Among them, the correct rate of NDA analysis was the highest.

Conclusion

Enhanced MRI can extract quantitative texture parameters, which is helpful to distinguish GBM, PCNSLs and sMT.

图1 患者,男性,52岁,右侧枕叶胶质母细胞瘤红色感兴趣区绘制图
图2 胶质母细胞瘤、原发性中枢神经系统淋巴瘤与单发转移瘤的30个纹理参数聚类分析热图。由此可较直观的看出参数的分布情况,在热图上半部分以13个Entropy为主,仅坐标方向不一样,但参数值接近,因此以统一色绿色为代表。同样,WaveEnLLS-1及WaveEnLLS-2值虽然很大,但数值相似,均以红色为代表
表1 GBM、PCNSLs、sMT纹理参数比较
纹理参数 GBM(n=30) PCNSLs(n=20) sMT(n=21) F P
S(0,1)Entropy 2.63±0.12 2.36±0.14 2.51±0.17 25.69 <0.01
WavEnLL_s-2 16328.28±1128.41 11899.81±2587.29 14734.81±1964.22 34.43 <0.01
Variance 1198.45±681.96 278.17±199.68 600.59±463.86 31.73 <0.01
Perc.99% 181.53±41.89 152.45±35.87 149.48±29.21 9.36 <0.01
Perc.01% 47.90±22.30 80.55±13.19 45.14±17.83 28.23 <0.01
S(1,-1)Entropy 2.72±0.13 2.41±0.17 2.59±0.21 25.27 <0.01
S(5,0)Correlat 0.41±0.18 0.17±0.40 0.13±0.30 10.84 <0.01
WavEnLL_s-1 17427.74±371.76 15672.28±1119.60 16875.13±757.98 35.81 <0.01
135dr_RLNonUni 2134.37±1522.78 15672.28±1119.60 16875.13±757.98 23.71 <0.01
Horzl_RLNonUni 1876.11±1319.64 539.77±612.80 922.59±1027.19 23.05 <0.01
S(1,0)Entropy 2.61±0.13 2.36±0.15 2.53±0.18 23.13 <0.01
WavEnHL_s-2 160.18±66.87 479.80±292.12 328.61±176.05 22.70 <0.01
S(1,-1)InvDfMom 0.27±0.07 0.22±0.06 0.21±0.05 12.97 <0.01
S(4,0)SumOfSqs 107.89±5.87 94.40±11.20 102.71±12.04 17.41 <0.01
S(4,4)SumAverg 63.49±1.82 64.21±4.46 64.09±2.08 3.80 0.15
S(4,-4)AngSMom 0.002±0.002 0.006±0.004 0.005±0.007 25.45 <0.01
Teta3 0.68±0.18 0.78±0.21 0.70±0.24 0.80 0.67
S(5,5)DifVarnc 61.43±14.19 55.06±32.04 70.18±18.19 6.51 0.04
S(4,-4)SumAverg 63.63±1.58 65.93±2.51 63.80±2.02 11.33 <0.01
S(2,-2)InvDfMom 0.18±0.05 0.16±0.04 0.14±0.04 6.82 0.03
S(3,3)Entropy 2.89±0.17 2.41±0.33 2.64±0.29 26.61 <0.01
S(5,0)Entropy 2.90±0.18 2.38±0.35 2.62±0.32 28.84 <0.01
S(3,0)Entropy 2.86±0.16 2.44±0.25 2.65±0.27 26.65 <0.01
S(4,0)Entropy 2.89±0.17 2.41±0.33 2.64±0.29 27.87 <0.01
S(2,2)Entropy 2.86±0.16 2.45±0.26 0.65±0.26 25.49 <0.01
S(3,-3)Entropy 2.89±0.18 2.43±0.28 2.62±0.31 29.13 <0.01
S(2,-2)Entropy 2.85±0.16 2.45±0.24 2.63±0.26 26.90 <0.01
S(1,1)Entropy 2.72±0.13 2.41±0.17 2.60±0.20 25.42 <0.01
S(0,2)Entropy 2.80±0.15 2.45±0.21 2.61±0.23 26.41 <0.01
S(2,0)Entropy 2.79±0.15 2.44±0.21 2.63±0.24 26.46 <0.01
图3 原始数据分析法示意图
图4 主成分分析法示意图
图5 线性判别分析法示意图
图6 非线性判别分析法示意图
1
Haldorsen I, Espeland A, Larsson E. Central nervous system lymphoma: characteristic findings on traditional and advanced imaging [J]. AJNR Am J Neuroradiol, 2011, 32(6): 984-992.
2
Küker W, Nägele T, Korfel A, et al. Primary central nervous system lymphomas (PCNSL): MRI features at presentation in 100 patients [J]. J Neurooncol, 2005, 72(2): 169-177.
3
Ma J, Kim H, Rim N, et al. Differentiation among glioblastoma multiforme, solitary metastatic tumor, and lymphoma using whole-tumor histogram analysis of the normalized cerebral blood volume in enhancing and perienhancing lesions [J]. AJNR Am J Neuroradiol, 2010, 31(9): 1699-1706.
4
Toh C, Castillo M, Wong A, et al. Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging [J]. AJNR Am J Neuroradiol, 2008, 29(3): 471-475.
5
Chawla S, Zhang Y, Wang S, et al. Proton magnetic resonance spectroscopy in differentiating glioblastomas from primary cerebral lymphomas and brain metastases [J]. J Comp Assist Tomogr, 2010, 34(6): 836-841.
6
Wang S, Kim S, Chawla S, et al. Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging [J]. AJNR Am J Neuroradiol, 2011, 32(3): 507-514.
7
Soni N, Priya S, Bathla G. Texture analysis in cerebral gliomas: a review of the literature [J]. AJNR Am J Neuroradiol, 2019, 40(6): 928-934.
8
Gulsen S. Achieving higher diagnostic results in stereotactic brain biopsy by simple and novel technique [J]. Open Access Maced J Med Sci, 2015, 3(1): 99-104.
9
Gutman D, Cooper L, Hwang S, et al. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set [J]. Radiology, 2013, 267(2): 560-569.
10
Naveed MA, Goyal P, Malhotra A, et al. Grading of oligodendroglial tumors of the brain with apparent diffusion coefficient, magnetic resonance spectroscopy, and dynamic susceptibility contrast imaging [J]. Neuroradiol J, 2018, 31(4): 379-385.
11
王敏红,周理想,冯湛. 常规MRI纹理分析鉴别脑胶质母细胞瘤和原发性中枢神经系统淋巴瘤的价值 [J]. 中国癌症杂志, 2019, 29(4): 284-288.
12
王敏红,冯湛. 瘤周水肿常规MRI纹理分析鉴别脑胶质母细胞瘤和单发转移瘤的价值 [J]. 中华放射学杂志, 2018, 52(10): 756-760.
13
尹浩霖,李冬宝,蒋宇,等. 高通量纹理分析鉴别脑内单发转移瘤和高级别胶质瘤 [J]. 中华肿瘤杂志, 2018, 40(11): 841-846.
14
Liu Y, Zhang X, Feng N, et al. The effect of glioblastoma heterogeneity on survival stratification: a multimodal MR imaging texture analysis [J]. Acta Radiol, 2018, 59(10): 1239-1246.
15
朱宗明,冯银波,陶广宇,等. 基于CT图像纹理分析方法对胸段食管癌术前T分期的研究价值 [J]. 临床放射学杂志, 2019, 38(1): 72-76.
16
Ng F, Ganeshan B, Kozarski R, et al. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival [J]. Radiology, 2013, 266(1): 177-184.
17
任继亮,袁瑛,董迪,等. 术前表观扩散系数图纹理分析预测舌和口底鳞状细胞癌组织学分级的价值 [J]. 中华放射学杂志, 2019, 53(4): 281-285.
18
钟熹,江魁明,麦慧,等. 基于灰度共生矩阵的MRI纹理分析预测舌癌患者颈部淋巴结转移的价值初探 [J]. 中华放射学杂志, 2018, 52(9): 649-654.
19
曹崑,刘慧,赵博,等. 早期增强MRI纹理特征分析对乳腺癌新辅助化疗后病理完全缓解的判断能力 [J]. 中华放射学杂志, 2018, 52(7): 523-527.
20
张竹伟,华婷,徐婷婷,等. 常规MRI纹理分析鉴别乳腺良、恶性病变的价值初探 [J]. 中华放射学杂志, 2017, 51(8): 588-591.
[1] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[2] 张莲莲, 惠品晶, 丁亚芳. 颈部血管超声在粥样硬化斑块易损性评估中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 816-821.
[3] 刘冰茹, 刘皓希, 陈莹, 赖世伟, 陈蓉. 疑似乳腺癌的韧带样纤维瘤病一例[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 314-317.
[4] 叶艳娜, 叶瑞婷, 陈艳玲, 彭雯, 刘乐, 肖文秋, 黄辉, 李明深, 钟慕仪, 叶娴. 基于影像学表现和临床病理特征预测良性与交界性乳腺叶状肿瘤复发的列线图模型[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 229-237.
[5] 方心俞, 黄昌瑜, 胡洪新, 林溢铭, 陈旸, 张楠心, 张文明. 膝关节软骨下不全骨折的治疗选择与疗效分析[J]. 中华关节外科杂志(电子版), 2023, 17(04): 583-587.
[6] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[7] 张雯, 张彦春, 刘凯波, 徐宏燕. 北京市胎儿先天性脑积水的产前MRI诊断及围产期转归[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 345-349.
[8] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[9] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[10] 钟广俊, 刘春华, 朱万森, 徐晓雷, 王兆军. MRI联合不同扫描序列在胃癌术前分期诊断及化疗效果和预后的评估[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 378-382.
[11] 吴钰娴, 冯亚园, 霍雷, 贾宁阳, 张娟. 原发性肝脏淋巴瘤的影像学诊断价值研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 349-353.
[12] 冯海涛, 徐涛, 刘文阳, 孙晨, 曹尚超. 三维动脉自旋标记联合动态对比增强MRI对脑胶质瘤术后复发及放射性脑坏死诊断的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 262-265.
[13] 王志文, 郑雪梅, 张庆坤, 王海江. 自发性低颅压综合征75例临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(04): 398-401.
[14] 岳永飞, 朱利平, 王晓艳. 磁共振成像技术在预测胎盘植入性疾病患者剖宫产术中出血量的研究[J]. 中华产科急救电子杂志, 2023, 12(03): 167-172.
[15] 赵暾, 徐霁华, 何有娣, 鲁明. 误诊为脑梗死且险些溶栓的急性自发微量脑出血一例[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 369-372.
阅读次数
全文


摘要