切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2022, Vol. 12 ›› Issue (06) : 348 -350. doi: 10.3877/cma.j.issn.2095-2015.2022.06.005

论著

人工智能与放射科医师判读肺实性肿块CT征象的一致性研究
韩雷1, 陈小宇1,(), 王楠楠1   
  1. 1. 223001 江苏淮安,徐州医科大学附属淮安医院影像科
  • 收稿日期:2022-02-28 出版日期:2022-12-01
  • 通信作者: 陈小宇

Study on the consistency between artificial intelligence and radiologist in interpreting CT signs of solid lung masses

Lei Han1, Xiaoyu Chen1,(), Nannan Wang1   

  1. 1. Department of Imaging, Huai′an Hospital Affiliated to Xuzhou Medical University, Huai′an 223001, China
  • Received:2022-02-28 Published:2022-12-01
  • Corresponding author: Xiaoyu Chen
引用本文:

韩雷, 陈小宇, 王楠楠. 人工智能与放射科医师判读肺实性肿块CT征象的一致性研究[J]. 中华消化病与影像杂志(电子版), 2022, 12(06): 348-350.

Lei Han, Xiaoyu Chen, Nannan Wang. Study on the consistency between artificial intelligence and radiologist in interpreting CT signs of solid lung masses[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2022, 12(06): 348-350.

目的

分析人工智能与放射科医师判读肺内实性肿块CT征象的一致性,探索人工智能在临床应用中的价值。

方法

回顾性分析徐州医科大学附属淮安医院2020年1月至2022年1月经病理确诊的58例肺内实性肿块,重建CT薄层数据包并使用人工智能软件分析肿块的征象(包括分叶征、毛刺征、空泡征、血管集束征、胸膜凹陷征),同时两位放射科医师分别分析肿块的以上特征,采用一致性检验分析放射科医师与人工智能判读结果的一致性。

结果

放射科医师两次判读肿块是否存在分叶征、毛刺征、空泡征、血管集束征、胸膜凹陷征、支气管充气征的一致性优(Kappa值0.862~0.965,P均<0.001),两名放射科医师判读结果的一致性优(Kappa值0.8262~0.928,P均<0.001)。放射科医师与人工智能判读的肿块CT征象一致性优(Kappa值0.770~0.906,P均<0.001),其中分叶征的一致性最高(Kappa=0.906),血管集束征的一致性最低(Kappa=0.770)。

结论

人工智能可以可靠的评估肺内实性肿块的CT征象,并提高放射科医师的阅片效率。

Objective

To analyze the consistency between artificial intelligence and radiologists in interpreting CT signs of solid lung masses, and explore the value of artificial intelligence in clinical application.

Methods

A retrospective analysis was performed on 58 cases of solid lung masses confirmed by pathology in Huai ′an Hospital Affiliated to Xuzhou Medical University from January 2020 to January 2022.CT thin layer data package was reconstructed and the tumor signs(including lobulation sign, burr sign, vacuole sign, vascular cluster sign and pleural depression sign)were analyzed by artificial intelligence software.At the same time, two radiologists analyzed the above characteristics of the tumors respectively.Consistency test was used to analyze the consistency of interpretation results by radiologists and artificial intelligence.

Results

The consistency of the radiologist′s two interpretation of whether the tumors had lobulation sign, burr sign, vacuole sign, vascular convergence sign, pleural depression sign and bronchial inflation sign was excellent(Kappa value ranged from 0.862 to 0.965, all P<0.001), and the consistency of the two radiologists′ interpretation results was excellent(Kappa value ranged from 0.826 to 0.928, all P<0.001). The consistency of CT signs of tumors interpreted by radiologists and artificial intelligence was excellent(Kappa value ranged from 0.770 to 0.906, all P<0.001), among which the consistency of lobulation sign was the highest(Kappa=0.906), and the consistency of vascular bundle sign was the lowest(Kappa=0.770).

Conclusion

Artificial intelligence can reliably evaluate the CT signs of solid lung masses, and improve the efficiency of radiologists.

图1 人工智能软件分析肺内实性肿块注:1A患者男性,72岁,左肺上叶下舌段段鳞癌,人工智能分析肿块CT具有分叶征、毛刺征、胸膜凹陷征、支气管充气征四种恶性征象,提示高风险。1B患者男性,52岁,右肺下叶背段腺癌,人工智能分析肿块CT具有分叶征、胸膜凹陷征、支气管充气征三种恶性征象,提示高风险
表1 一名放射科医师两次判读肿块CT特征的一致性
表2 两名放射科医师判读肿块CT特征的一致性
表3 人工智能与放射科医师判读肿块CT特征的一致性
1
Deshpand RChandra MRauthan A.Evolving trends in lung cancer:Epidemiology,diagnosis,and management[J].Indian J Cancer202259(Supplement):S90-S105.
2
Zhang JIjzerman MJOberoi J,et al.Time to diagnosis and treatment of lung cancer:A systematic overview of risk factors,interventions and impact on patient outcomes[J].Lung Cancer2022166:27-39.
3
舒静,张涵,赵振国,等.肺炎性假瘤、周围型肺癌CT征象特征及其鉴别诊断价值[J].中国CT和MRI杂志202119(5):35-37.
4
Tao GZhu LChen Q,et al.Prediction of future imagery of lung nodule as growth modeling with follow-up computed tomography scans using deep learning:a retrospective cohort study[J].Transl Lung Cancer Res202211(2):250-262.
5
梁雪,潘金彬,丁建民,等.超声造影LI-RADS与增强CT/MRI LI-RADS对肝微小病灶分类的一致性及差异性研究[J].中华超声影像学杂志202130(11):938-943.
6
温艳,于连政,杜灵彬,等.中国3省城市癌症早诊早治项目地区肺癌高危人群的低剂量螺旋CT筛查依从性及相关因素分析[J].中华预防医学杂志202155(5):633-639.
7
孟瑞瑞,刘圆圆,青浩渺,等.肺癌高危人群低剂量螺旋CT筛查的临床分析[J].放射学实践202136(1):71-75.
8
Gao YHua MLv J,et al.Reproducibility of radiomic features of pulmonary nodules between low-dose CT and conventional-dose CT[J].Quant Imaging Med Surg202212(4):2368-2377.
9
Lan CCHsieh MSHsiao JK,et al.Deep Learning-based Artificial Intelligence Improves Accuracy of Error-prone Lung Nodules[J].Int J Med Sci202219(3):490-498.
10
段秀杰,李福元,付玉存.周围型非小细胞肺癌CT征象与临床病理分型的关系[J].现代肿瘤医学202028(15):2622-2626.
11
Wei SShi BZhang J,et al.Differentiating mass-like tuberculosis from lung cancer based on radiomics and CT features[J]Transl Cancer Res202110(10):4454-4463.
12
Manickavasagam RSelvan SSelvan Mary.CAD system for lung nodule detection using deep learning with CNN[J].Med Biol Eng Comput202260(1):221-228.
13
Potter ALRosenstein ALKiang MV,et al.Association of computed tomography screening with lung cancer stage shift and survival in the United States:quasi-experimental study[J].BMJ2022376:e069008.
14
Han XLuo NXu L,et al.Artificial intelligence stenosis diagnosis in coronary CTA:effect on the performance and consistency of readers with less cardiovascular experience[J].BMC Med Imaging202222(1):28.
15
Lyu SYZhang YZhang MW,et al.Diagnostic value of artificial intelligence automatic detection systems for breast BI-RADS 4 nodules[J].World J Clin Cases202210(2):518-527.
16
Deng JZhao MLi Q,et al.Implementation of artificial intelligence in the histological assessment of pulmonary subsolid nodules[J].Transl Lung Cancer Res202110(2):4574-4586.
17
Zhang HMeng DCai S,et al.The application of artificial intelligence in lung cancer:a narrative review[J].Transl Cancer Res202110(5):2478-2487.
18
Huang GWei XTang H,et al.A systematic review and meta-analysis of diagnostic performance and physicians′ perceptions of artificial intelligence(AI)-assisted CT diagnostic technology for the classification of pulmonary nodules[J].J Thorac Dis202113(8):4797-4811.
19
Lancaster HLZheng SAleshina OO,et al.Outstanding negative prediction performance of solid pulmonary nodule volume AI for ultra-LDCT baseline lung cancer screening risk stratification[J].Lung Cancer2022165:133-140.
20
于广浩,李为民,高杨,等.人工智能系统在CT肺小结节筛查中的准确率及检出时间分析[J].中国医药科学202111(21):193-195,208.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[3] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[4] 张璟璟, 赵博文, 潘美, 彭晓慧, 毛彦恺, 潘陈可, 朱玲艳, 朱琳琳, 蓝秋晔. 胎儿超声心动图测量McGoon指数在评价胎儿肺血管发育中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(08): 860-865.
[5] 罗刚, 泮思林, 陈涛涛, 许茜, 纪志娴, 王思宝, 孙玲玉. 超声心动图在胎儿心脏介入治疗室间隔完整的肺动脉闭锁中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(06): 605-609.
[6] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[7] 王泽想, 高艳, 赵岩, 杨秀清, 李梦华, 王振华, 许晓英, 杨琼, 于占营, 王爱霞, 贺刚, 刘景院. 三例人类肺型鼠疫患者临床特征分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 341-347.
[8] 王汉生, 陈晓, 尤辉, 刘岩, 任涛, 王梅芳. 肺吸虫感染致胸腔积液6例临床分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 348-353.
[9] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[10] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[11] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[12] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[13] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[14] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[15] 孙培培, 张二明, 时延伟, 赵春燕, 宋萍萍, 张硕, 张克, 周玉娇, 赵璨, 闫维, 吴蓉菊, 宋丽萍, 郭伟安, 马石头, 安欣华, 包曹歆, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病患病情况及相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 711-719.
阅读次数
全文


摘要