切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2022, Vol. 12 ›› Issue (06) : 367 -372. doi: 10.3877/cma.j.issn.2095-2015.2022.06.009

综述

纳米药物在炎症性肠病生物制剂靶向治疗中的应用
韦可艺1, 徐昌青1, 杨静1,()   
  1. 1. 250014 济南,山东第一医科大学第一附属医院(山东省千佛山医院)消化内科
  • 收稿日期:2022-07-11 出版日期:2022-12-01
  • 通信作者: 杨静

Application of nanomedicines in targeted therapy of biologics for inflammatory bowel disease

Keyi Wei1, Changqing Xu1, Jing Yang1,()   

  1. 1. Department of Gastroenterology, First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
  • Received:2022-07-11 Published:2022-12-01
  • Corresponding author: Jing Yang
引用本文:

韦可艺, 徐昌青, 杨静. 纳米药物在炎症性肠病生物制剂靶向治疗中的应用[J]. 中华消化病与影像杂志(电子版), 2022, 12(06): 367-372.

Keyi Wei, Changqing Xu, Jing Yang. Application of nanomedicines in targeted therapy of biologics for inflammatory bowel disease[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2022, 12(06): 367-372.

炎症性肠病(IBD)是一类主要由于肠黏膜免疫功能紊乱引起的慢性、进展性和复发缓解性的炎症性疾病,全球发病率逐年攀升,因此开发疾病管理的先进策略势在必行。由于糖皮质激素和免疫抑制剂等传统药物用于中重度IBD患者疗效不确切且长期使用副作用多,生物制剂已成为权威指南推荐的一线治疗方案。生物制剂的使用尚面临着巨大的挑战,包括患者依从性差、治疗效果差异、潜在不良反应和经济负担等。纳米颗粒作为介导递送的新型药物载体,基于IBD肠道炎症的病理生理学机制设计,可以克服传统生物制剂分布率差和局部浓度低的缺点,并提供口服靶向给药的机会,从而有效增加药物治疗作用,提高患者的依从性,并降低可能的不良反应。本文旨在探讨基于纳米颗粒载体介导的生物制剂在IBD患者精准治疗中的作用,希望对进一步研发治疗性纳米药物有参考意义。

Inflammatory bowel disease(IBD)is a group of chronic, progressive and relapsing intestinal inflammatory diseases caused by immune dysfunction of intestinal mucosa.The global incidence of IBD is increasing year by year, while the need for advancing treatments is imperative.Due to the inaccurate efficacy and long-term side effects of traditional drugs such as glucocorticoids and immunosuppressive drugs for IBD patients with moderate to severe degrees, biologics have become the first-line option recommended by authoritative guidelines.The use of biologics still faces significant challenges, including patients′poor compliance, differences in treatment outcomes, potential adverse effects, and economic burden.Nanoparticles(NPs)are novel carriers for drug delivery, which are designed based on the pathophysiological mechanisms of IBD and can overcome the disadvantages of poor distribution rates and low local concentrations of traditional biologics.NPs can provide opportunities for orally targeted drug delivery, thus effectively increase the therapeutic effect of drugs, improve patients′compliance, and reduce possibly adverse effects.Through literature review, this paper aims to explore the role of NPs-carrier for biologics in the precision therapy on IBD patients, which has essential guiding significance for further development of therapeutic nanomedicines.

1
Sairenji TCollins KLEvans DV.An Update on Inflammatory Bowel Disease[J].Primary Care201744(4):673-692.
2
Mak WYZhao MNg SC,et al.The epidemiology of inflammatory bowel disease:East meets west[J].J Gastroenterol Hepatol202035(3):380-389.
3
Guan Q.A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease[J].Journal of Immunology Research20192019:1-16.
4
Moschen ARTilg HRaine T.IL-12,IL-23 and IL-17 in IBD:immunobiology and therapeutic targeting[J].Nat Rev Gastroenterol Hepatol201916(3):185-196.
5
Ahluwalia BMoraes LMagnusson MK,et al.Immunopathogenesis of inflammatory bowel disease and mechanisms of biological therapies[J].Scand J Gastroenterol201853(4):379-389.
6
Leppkes MNeurath MF.Cytokines in inflammatory bowel diseases-Update 2020[J].Pharmacol Res2020158:104835.
7
Flynn SEisenstein S.Inflammatory Bowel Disease Presentation and Diagnosis[J].Surgical Clinics of North America201999(6):1051-1062.
8
Katsanos KHPapadakis KA.Inflammatory Bowel Disease:Updates on Molecular Targets for Biologics[J].Gut Liver201711(4):455-463.
9
Weisshof REl J KZmeter N,et al.Emerging Therapies for Inflammatory Bowel Disease[J].Adv Ther201835(11):1746-1762.
10
Cai ZWang SLi J.Treatment of Inflammatory Bowel Disease:A Comprehensive Review[J].Front Med(Lausanne)20218:765474.
11
Feuerstein JDIsaacs KLSchneider Y,et al.AGA Clinical Practice Guidelines on the Management of Moderate to Severe Ulcerative Colitis[J].Gastroenterology2020158(5):1450-1461.
12
Raine TBonovas SBurisch J,et al.ECCO Guidelines on Therapeutics in Ulcerative Colitis:Medical Treatment[J].J Crohns Colitis202216(1):2-17.
13
Fredericks EWatermeyer G.De-escalation of biological therapy in inflammatory bowel disease:Benefits and risks[J].S Afr Med J2019109(10):745-749.
14
Kirchgesner JLemaitre MCarrat F,et al.Risk of Serious and Opportunistic Infections Associated With Treatment of Inflammatory Bowel Diseases[J].Gastroenterology2018155(2):337-346.
15
Hindryckx PNovak GBonovas S,et al.Infection Risk With Biologic Therapy in Patients With Inflammatory Bowel Disease[J].Clin Pharmacol Ther2017102(4):633-641.
16
Prasad MLambe UPBrar B,et al.Nanotherapeutics:An insight into healthcare and multi-dimensional applications in medical sector of the modern world[J].Biomedicine & Pharmacotherapy201897:1521-1537.
17
Sohail MMudassirMinhas MU,et al.Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis:a review of recent developments and future prospects[J].Drug Deliv Transl Res20199(2):595-614.
18
Jain KK.An Overview of Drug Delivery Systems[J].Methods Mol Biol20202059:1-54.
19
Chauhan DSri SKumar R,et al.Evaluation of size,shape,and charge effect on the biological interaction and cellular uptake of cerium oxide nanostructures[J].Nanotechnology202132(35).
20
Cotin GBlanco-Andujar CPerton F,et al.Unveiling the role of surface,size,shape and defects of iron oxide nanoparticles for theranostic applications[J].Nanoscale202113(34):14552-14571.
21
Yang JJia CYang J.Designing Nanoparticle-based Drug Delivery Systems for Precision Medicine[J].International Journal of Medical Sciences202118(13):2943-2949.
22
Mitchell MJBillingsley MMHaley RM,et al.Engineering precision nanoparticles for drug delivery[J].Nat Rev Drug Discov202120(2):101-124.
23
Pandey VHaider TChandak AR,et al.Surface modified silk fibroin nanoparticles for improved delivery of doxorubicin:Development,characterization,in-vitro studies[J].International Journal of Biological Macromolecules2020164:2018-2027.
24
Shi Yvan der Meel RChen X,et al.The EPR effect and beyond:Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy[J].Theranostics202010(17):7921-7924.
25
Watanabe ATanaka HSakurai Y,et al.Effect of particle size on their accumulation in an inflammatory lesion in a dextran sulfate sodium(DSS)-induced colitis model[J].Int J Pharm2016509(1/2):118-122.
26
Takechi-Haraya YOhgita TDemizu Y,et al.Current Status and Challenges of Analytical Methods for Evaluation of Size and Surface Modification of Nanoparticle-Based Drug Formulations[J].AAPS Pharm Sci Tech202223(5):150.
27
Cui MZhang MLiu K.Colon-targeted drug delivery of polysaccharide-based nanocarriers for synergistic treatment of inflammatory bowel disease:A review[J].Carbohydrate Polymers2021272:118530.
28
Hartwig OShetab Boushehri MAShalaby KS,et al.Drug delivery to the inflamed intestinal mucosa-targeting technologies and human cell culture models for better therapies of IBD[J].Advanced Drug Delivery Reviews2021175:113828.
29
Bannister AHBromma KSung W,et al.Modulation of nanoparticle uptake,intracellular distribution,and retention with docetaxel to enhance radiotherapy[J].Br J Radiol202093(1106):20190742.
30
Grattoni ACooke JP.Emerging nanotechnologies in cardiovascular medicine[J].Nanomedicine202239:102472.
31
Stephen BJSuchanti SMishra R,et al.Cancer Nanotechnology in Medicine:A Promising Approach for Cancer Detection and Diagnosis[J].Crit Rev Ther Drug Carrier Syst202037(4):375-405.
32
Garbayo EPascual Gil SRodríguez Nogales C,et al.Nanomedicine and drug delivery systems in cancer and regenerative medicine[J].WIREs Nanomedicine and Nanobiotechnology202012(5):e1637.
33
Click BRegueiro M.Managing Risks with Biologics[J].Curr Gastroenterol Rep201921(2):1.
34
NidhiDadwal AHallan SS,et al.Development of enteric-coated microspheres of embelin for their beneficial pharmacological potential in ulcerative colitis[J].Artif Cells Nanomed Biotechnol201745(6):1-9.
35
Da Silva FLOMarques MBDFKato KC,et al.Nanonization techniques to overcome poor water-solubility with drugs[J].Expert Opin Drug Discov202015(7):853-864.
36
Wang YPi CFeng X,et al.The Influence of Nanoparticle Properties on Oral Bioavailability of Drugs [J].Int J Nanomedicine202015:6295-6310.
37
Xu YShrestha NPreat V,et al.Overcoming the intestinal barrier:A look into targeting approaches for improved oral drug delivery systems[J].J Control Release2020322:486-508.
38
Gao MYang CWu C,et al.Hydrogel-metal-organic-framework hybrids mediated efficient oral delivery of siRNA for the treatment of ulcerative colitis[J].J Nanobiotechnology202220(1):404.
39
Naeem MLee JOshi M A,et al.Colitis-targeted hybrid nanoparticles-in-microparticles system for the treatment of ulcerative colitis[J].Acta Biomaterialia2020116:368-382.
40
Chen YSong WShen L,et al.Vasodilator Hydralazine Promotes Nanoparticle Penetration in Advanced Desmoplastic Tumors[J].ACS Nano201913(2):1751-1763.
41
Qiu NGao JLiu Q,et al.Enzyme-Responsive Charge-Reversal Polymer-Mediated Effective Gene Therapy for Intraperitoneal Tumors[J].Biomacromolecules201819(6):2308-2319.
42
Miao LGuo SLin C M,et al.Nanoformulations for combination or cascade anticancer therapy[J].Adv Drug Deliv Rev2017115:3-22.
43
杨花花,周旭春,黄怡,等.治疗炎症性肠病常见的生物制剂[J].中国医药科学202212(8):68-71.
44
Jeong DYKim SSon MJ,et al.Induction and maintenance treatment of inflammatory bowel disease:A comprehensive review[J].Autoimmun Rev201918(5):439-454.
45
Katsanos KHPapadakis KA.Inflammatory Bowel Disease:Updates on Molecular Targets for Biologics[J].Gut and Liver201711(4):455-463.
46
Li XYu MZhu Z,et al.Oral delivery of infliximab using nano-in-microparticles for the treatment of inflammatory bowel disease[J].Carbohydrate Polymers2021273:118556.
47
Fattal EFay F.Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases[J].Adv Drug Deliv Rev2021175:113809.
48
Huang YGuo JGui S.Orally targeted galactosylated chitosan poly(lactic-co-glycolic acid)nanoparticles loaded with TNF-a siRNA provide a novel strategy for the experimental treatment of ulcerative colitis[J].Eur J Pharm Sci2018125:232-243.
49
Ma YGao WZhang Y,et al.Biomimetic MOF Nanoparticles Delivery of C-Dot Nanozyme and CRISPR/Cas9 System for Site-Specific Treatment of Ulcerative Colitis[J].ACS Applied Materials & Interfaces202214(5):6358-6369.
50
You YZhou CLi D,et al.Sorting nexin 10 acting as a novel regulator of macrophage polarization mediates inflammatory response in experimental mouse colitis[J].Sci Rep20166:20630.
51
Bao WWu QHu B,et al.Oral Nanoparticles of SNX10-shRNA Plasmids Ameliorate Mouse Colitis[J].Int J Nanomedicine202116:345-357.
52
Sun TKwong CGao C,et al.Amelioration of ulcerative colitis via inflammatory regulation by macrophage-biomimetic nanomedicine[J].Theranostics202010(22):10106-10119.
53
Zhang MXu CLiu D,et al.Oral Delivery of Nanoparticles Loaded With Ginger Active Compound,6-Shogaol,Attenuates Ulcerative Colitis and Promotes Wound Healing in a Murine Model of Ulcerative Colitis[J].J Crohn′s Colitis201812(2):217-229.
54
Fan WZhang SWu Y,et al.Genistein-Derived ROS-Responsive Nanoparticles Relieve Colitis by Regulating Mucosal Homeostasis[J].ACS Applied Materials & Interfaces202113(34):40249-40266.
55
Feng ZJiao LWu Z,et al.A Novel Nanomedicine Ameliorates Acute Inflammatory Bowel Disease by Regulating Macrophages and T-Cells[J].Molecular Pharmaceutics202118(9):3484-3495.
56
Diez-Echave PRuiz-Malagón AJMolina-Tijeras JA,et al.Silk fibroin nanoparticles enhance quercetin immunomodulatory properties in DSS-induced mouse colitis[J].Int J Pharmaceutics2021606:120935.
57
Asgharzadeh FHashemzadeh ARahmani F,et al.Cerium oxide nanoparticles acts as a novel therapeutic agent for ulcerative colitis through anti-oxidative mechanism[J].Life Sci2021278:119500.
58
Gou SHuang YWan Y,et al.Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis[J].Biomaterials2019212:39-54.
59
Li CZhao YCheng J,et al.A Proresolving Peptide Nanotherapy for Site-Specific Treatment of Inflammatory Bowel Disease by Regulating Proinflammatory Microenvironment and Gut Microbiota[J].Adv Sci(Weinh)20196(18):1900610.
60
Lee YSugihara KGillilland MR,et al.Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier,microbiome and immune responses in colitis[J].Nat Mater202019(1):118-126.
61
Yan LZhao FWang J,et al.A Safe-by-Design Strategy towards Safer Nanomaterials in Nanomedicines[J].Advanced Materials201931(45):1805391.
62
Zielińska ACosta BFerreira MV,et al.Nanotoxicology and Nanosafety:Safety-by-Design and Testing at a Glance[J].Int J Environ Res Public Health202017(13):4657.
[1] 何炼图, 汤庆, 廖海星, 周兴华, 李颖珊, 胡毅, 汤敏轩, 张雨欣, 陈武羲, 韦东君. 超声造影引导尿激酶精准溶解治疗多房分隔包裹型胸腔积液[J]. 中华医学超声杂志(电子版), 2022, 19(11): 1250-1255.
[2] 中华医学会骨科分会关节外科学组, 中国医师协会运动医学医师分会, 海军军医大学附属长海医院. 中轴型脊柱关节炎诊断和治疗专家共识(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(02): 151-160.
[3] 王晓利, 李琦, 李春风, 王璟琦, 管晓东. 保留睾丸动脉的腹腔镜精索内静脉高位结扎术对精索静脉曲张致不育的疗效分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 261-264.
[4] 庄宝琳, 郑万祥, 庄宝钧, 杨力军, 王福利, 袁建林, 秦卫军, 武国军, 刘飞. 数字化肾脏及其衍生应用在肾结石内镜手术中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(03): 285-288.
[5] 康德智. 创伤性颅脑损伤后颅外并发症的精准治疗策略[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 193-195.
[6] 王娟, 王忠正, 王宇钏, 李会杰, 李泳龙, 程晓东, 朱燕宾, 吕红芝, 陈伟, 张英泽. 股骨头部分置换术精准微创治疗ARCO Ⅲ期股骨头缺血坏死的实验研究[J]. 中华老年骨科与康复电子杂志, 2022, 08(05): 260-262.
[7] 朱燕宾, 程晓东, 王宇钏, 王忠正, 李泳龙, 李会杰, 王娟, 吕红芝, 陈伟, 张英泽. 股骨头部分置换术精准微创治疗中老年ARCO Ⅲ期股骨头缺血坏死的有限元分析[J]. 中华老年骨科与康复电子杂志, 2022, 08(05): 257-259.
[8] 王運達, 孟欣, 王浩聪, 刘文卿, 辛涛. 基于深度学习神经网络Mask R-CNN脑肿瘤的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(02): 120-123.
[9] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[10] 余佳丽, 江学良. 从炎症性肠病治疗策略转变看生物制剂应用进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 129-134.
[11] 廖想, 李爽, 曾瑶. 2012-2021年粪菌移植研究的趋势及热点分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 93-99.
[12] 葛文松. 炎症性肠病双靶向联合治疗[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 65-67.
[13] 吕苏聪, 钟国强, 李瑾, 李明松. 炎症性肠病相关心理问题及诊治进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(01): 33-38.
[14] 王梦, 徐东燕, 张晓雨, 赵海剑. 伴有肛周疾病的炎症性肠病患者肛门功能及生活质量分析[J]. 中华消化病与影像杂志(电子版), 2022, 12(04): 224-227.
[15] 杨全龙, 范崇熙, 石学汇, 徐梦楠, 孙涛, 宁守斌. 炎症性肠病发病机制及与肠道菌群关系的研究进展[J]. 中华胃肠内镜电子杂志, 2022, 09(03): 148-151.
阅读次数
全文


摘要