切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2024, Vol. 14 ›› Issue (04) : 330 -335. doi: 10.3877/cma.j.issn.2095-2015.2024.04.009

论著

构建诺模图模型预测肝硬化食管胃底静脉曲张出血的风险
秦相清1,(), 朱陈1, 张海银1   
  1. 1. 226000 江苏省,南通大学附属南通第三医院消化内科
  • 收稿日期:2023-07-17 出版日期:2024-08-01
  • 通信作者: 秦相清
  • 基金资助:
    江苏省卫生和计划生育委员会项目(H2017057)

Construction of a normogram model for predicting the risk of esophageal and gastric varices bleeding in cirrhosis

Xiangqing Qin1,(), Chen Zhu1, Haiyin Zhang1   

  1. 1. Department of Gastroenterology, Nantong Third Hospital Affiliated to Nantong University, Nantong 226000, China
  • Received:2023-07-17 Published:2024-08-01
  • Corresponding author: Xiangqing Qin
引用本文:

秦相清, 朱陈, 张海银. 构建诺模图模型预测肝硬化食管胃底静脉曲张出血的风险[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 330-335.

Xiangqing Qin, Chen Zhu, Haiyin Zhang. Construction of a normogram model for predicting the risk of esophageal and gastric varices bleeding in cirrhosis[J/OL]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2024, 14(04): 330-335.

目的

评估HBV相关肝硬化患者食管胃底静脉曲张出血(EVGB)的风险因素,以构建预测EVGB风险的诺模图模型。

方法

以2019年1月至2022年1月南通大学附属南通第三医院收治的300例HBV相关肝硬化患者为研究对象,采用单、多变量Logistic回归分析筛选EVGB的风险因素并构建诺模图。通过受试者特征(ROC)的曲线下面积(AUC),评估模型对EVGB风险的识别能力。绘制校准曲线衡量模型预测风险与实际观测风险之间的一致性。

结果

共131例(43.7%)患者有EVGB史,单、多变量Logistic回归分析显示,腹水(OR=6.186,95% CI 3.286~11.644,P<0.001)、血小板计数(OR=0.983,95% CI 0.978~0.989,P<0.001)、血清白蛋白值(OR=0.963,95% CI 0.928~0.999,P=0.042)以及血糖水平(OR=1.093,95% CI 1.003~1.190,P=0.042)是EVGB的独立风险因素。基于以上变量构建预测肝硬化患者EVGB风险的诺模图,该模型AUC值为0.826(95% CI 0.780~0.872),提示判别能力良好。校准曲线显示模型预测风险与发生EGVB的实际风险之间具有高度一致性。

结论

腹水、血小板计数、血清白蛋白和血糖水平与肝硬化EGVB显著相关,基于这些变量构建的诺模图模型对EGVB风险具有良好的预测能力,可能有助于指导医护人员开展精准预防和临床干预。

Objective

To evaluate the risk factors of esophagogastric variceal bleeding (EVGB) for patients with hepatitis B virus (HBV)-related cirrhosis, and to construct a nomogram model to predict the risk of EVGB.

Methods

A total of 300 HBV-related cirrhotic patients admitted to Nantong Third Hospital Affiliated to Nantong University from January 2019 to January 2022 were selected as the study objects. The independent risk factors of EVGB were determined by the univariate and multivariate Logistic regression analysis, and a nomogram for predicting the risk of EVGB was constructed. The discriminative ability of the nomogram model for high-risk individual with EVGB was evaluated using the area under curve (AUC) of receiver operation characteristics (ROC) curve. Calibration curves were plotted to compare the consistency between the predicted risk and actual risk.

Results

A total of 131 patients (43.7%) had a history of EVGB, and the results of univariate and multivariate Logistic regression analysis revealed that ascites (OR=6.186, 95% CI: 3.286-11.644, P<0.001), platelet count (OR=0.983, 95% CI: 0.978-0.989, P<0.001), serum albumin (OR=0.963, 95% CI: 0.928-0.999, P=0.042) and blood glucose level (OR=1.093, 95% CI: 1.003-1.190, P=0.042) were independent risk factors for EVGB. Based on the above variables, a nomogram was constructed to predict the risk of EVGB in cirrhotic patients. The AUC value was 0.826 (95% CI: 0.780-0.872), suggesting a good predictive ability. The calibration curve showed a high level of consistency between the predicted risk and the actual risk.

Conclusion

Ascites, platelet count, serum albumin and blood glucose level are significantly correlated with the risk of EGVB in liver cirrhosis. The nomogram based on these variables has good predictive ability for the risk of EGVB, and it may help medical staffs make prevention strategy and clinical interventions.

表1 研究人群基线特征的比较
基线特征 食管胃底静脉曲张破裂出血 统计量 P
无(n=169) 有(n=131)
年龄[例(%)]     4.167 0.041
<55岁 100(59.2) 62(47.3)    
≥55岁 69(40.8) 69(52.7)    
性别[例(%)]     0.639 0.424
122(72.2) 89(67.9)    
47(27.8) 42(32.1)    
吸烟史[例(%)] 57(33.7) 42(32.1) 0.093 0.761
酗酒史[例(%)] 52(30.8) 33(25.2) 1.131 0.288
高血压[例(%)] 27(16.0) 27(20.6) 1.074 0.300
糖尿病[例(%)] 18(10.7) 15(11.5) 0.048 0.826
腹水[例(%)]     16.348 <0.001
147(87.0) 67(51.1)    
22(13.0) 64(48.9)    
WBC计数(×109/L,IP25-P75) 5.2(3.9~7.4) 4.4(3.0~6.3) 3.368 0.001
PLT计数(×109/L,IP25-P75) 142.0(102.0~170.0) 82.0(55.0~113.0) 7.974 < 0.001
血红蛋白(g/dL,±s) 12.5±3.1 11.0±3.2 4.111 < 0.001
INR(±s) 1.09±0.18 1.18±0.19 4.328 < 0.001
PT(S,IP25-P75) 12.0(11.1~15.6) 14.4(12.0~17.9) 4.089 < 0.001
ALT(U/L,IP25-P75) 41.0(25.0~97.0) 42.0(28.0~90.0) 0.456 0.648
AST(U/L,IP25-P75) 37.0(27.0~66.0) 42.0(29.0~61.0) 0.798 0.425
总胆红素(μmol/L,IP25-P75) 22.0(16.2~30.8) 27.3(18.8~36.4) 3054 0.002
血清白蛋白(g/L,±s) 38.3±7.9 34.5±8.0 4.189 < 0.001
γ-GT(U/L,IP25-P75) 40.0(19.0~100.0) 48.0(23.0~97.0) 0.837 0.402
ALP(U/L,IP25-P75) 88.0(68.0~120.0) 97.0(72.0~127.0) 1.580 0.114
血肌酐(μmol/L,IP25-P75) 69.6(59.7~83.9) 69.6(59.2~83.1) 0.641 0.521
尿素氮(mmol/L,IP25-P75) 4.8(4.0~6.9) 5.7(4.1~9.3) 1.953 0.053
血钠(mmol/L,±s) 139.5±3.3 138.7±3.4 2.040 0.042
血钾(mmol/L,±s) 3.9±0.6 3.9±0.7 0.313 0.754
血糖(mmol/L,IP25-P75) 5.5(5.0~6.7) 6.0(5.1~7.8) 2.469 0.014
Child-pugh分级[例(%)]     18.969 < 0.001
A 106(62.7) 50(38.2)    
B 58(34.3) 70(53.4)    
C 5(3.0) 11(8.4)    
表2 多变量Logistic回归分析肝硬化食管胃底静脉曲张破裂出血的风险因素
图1 预测肝硬化患者食管胃底静脉曲张破裂出血风险的诺模图
图2 诺模图预测肝硬化食管胃底静脉曲张破裂出血风险的ROC曲线(2A)与校正曲线(2B)
[1]
European Association for the Study of the Liver. Electronic address: easloffice@easloffice. eu, European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis[J]. J Hepatol, 2018, 69(2): 406-460.
[2]
Tripathi D, Stanley AJ, Hayes PC, et al. U. K. guidelines on the management of variceal haemorrhage in cirrhotic patients[J]. Gut, 2015, 64(11): 1680-1704.
[3]
Seo YS. Prevention and management of gastroesophageal varices[J]. Clin Mol Hepatol, 2018, 24(1): 20-42.
[4]
Haq I, Tripathi D. Recent advances in the management of variceal bleeding. Gastroenterol Rep(Oxf), 2017, 5(2): 113-126.
[5]
de Franchis R, Bosch J, Garcia-Tsao G, et al. Baveno VII-Renewing consensus in portal hypertension[J]. J Hepatol, 2022, 76(4): 959-974.
[6]
Lesmana C, Raharjo M, Gani RA. Managing liver cirrhotic complications: Overview of esophageal and gastric varices[J]. Clin Mol Hepatol, 2020, 26(4): 444-460.
[7]
Garcia-Tsao G, Abraldes JG, Berzigotti A, et al. Portal hypertensive bleeding in cirrhosis: Risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases[J]. Hepatology, 2017, 65(1): 310-335.
[8]
中华医学会肝病学分会, 中华医学会消化病学分会, 中华医学会消化内镜学分会. 肝硬化门静脉高压食管胃静脉曲张出血的防治指南[J]. 中华内科杂志, 2016, 55(1): 57-72.
[9]
Elshaarawy O, Allam N, Abdelsameea E, et al. Platelet-albumin-bilirubin score-a predictor of outcome of acute variceal bleeding in patients with cirrhosis[J]. World J Hepatol, 2020, 12(3): 99-107.
[10]
Luo R, Gao J, Gan W, et al. Clinical-radiomics nomogram for predicting esophagogastric variceal bleeding risk noninvasively in patients with cirrhosis[J]. World J Gastroenterol, 2023, 29(6): 1076-1089.
[11]
Takehara T, Sakamori R. Remaining challenges for the noninvasive diagnosis of esophageal varices in liver cirrhosis[J]. Esophagus, 2020, 17(1): 19-24.
[12]
Hou Y, Yu H, Zhang Q, et al. Machine learning-based model for predicting the esophagogastric variceal bleeding risk in liver cirrhosis patients[J]. Diagn Pathol, 2023, 18(1): 29.
[13]
连佳, 韩涛, 向慧玲, 等. 肝硬化食管胃静脉曲张出血患者胃镜治疗术后再出血的影响因素分析[J]. 临床肝胆病杂志, 2021, 37(9): 5.
[14]
门昌君, 张国梁, 邵娴. 基于超声内镜及临床数据预测肝硬化患者出血风险的列线图模型建立[J]. 中华肝脏病杂志, 2021, 29(8): 759-765.
[15]
Zhang Q, Niu S, Yang L, et al. A novel prognostic model for predicting the risk of first variceal hemorrhage in patients with HBV-related cirrhosis[J]. Front Cell Infect Microbiol, 2023, 13: 1062172.
[16]
中华医学会肝病学分会. 肝硬化诊治指南[J]. 中华肝脏病杂志, 2019, 27(11): 20.
[17]
中华医学会外科学分会脾及门静脉高压外科学组. 肝硬化门静脉高压症食管、胃底静脉曲张破裂出血诊治专家共识(2019版)[J]. 中国实用外科杂志, 2019, 39(12): 1241-1247.
[18]
El Sheref S, Afify S, Berengy MS. Clinical characteristics and predictors of esophagogastric variceal bleeding among patients with HCV-induced liver cirrhosis: An observational comparative study[J]. PLoS One, 2022, 17(10): e0275373.
[19]
Elsebaey MA, Tawfik MA, Elshweikh SA, et al. Impact of Helicobacter pylori Infection on Gastric Variceal Bleeding among Patients with Liver Cirrhosis[J]. Gastroenterol Res Pract, 2019, 2019: 6529420.
[20]
Kleber G, Sauerbruch T, Ansari H, et al. Prediction of variceal hemorrhage in cirrhosis: a prospective follow-up study[J]. Gastroenterology, 1991, 100(5 Pt 1): 1332-1337.
[21]
Liu H, Zhang Q, Gao F, et al. Platelet Count/Spleen Thickness Ratio and the Risk of Variceal Bleeding in Cirrhosis With Esophagogastric Varices[J]. Front Med(Lausanne), 2022, 9: 870351.
[22]
Yu S, Chen W, Jiang Z. Platelet count/spleen volume ratio has a good predictive value for esophageal varices in patients with hepatitis B liver cirrhosis[J]. PLoS One, 2021, 16(12): e0260774.
[23]
Metwally K, Essam T, Atwa A, et al. Helicobacter pylori versus platelet-to-spleen ratio as a risk factor for variceal bleeding in patients with liver-cirrhosis-related portal hypertension[J]. Am J Med Sci, 2022, 364(1): 23-28.
[24]
Driver BE, Horton G, Barkun A, et al. Validation of a decision rule to predict patients at low risk of variceal upper gastrointestinal hemorrhage[J]. Am J Emerg Med, 2021, 44: 267-271.
[25]
Liu CH, Liu S, Zhao YB, et al. Development and validation of a nomogram for esophagogastric variceal bleeding in liver cirrhosis: A cohort study in 1099 cases[J]. J Dig Dis, 2022, 23(10): 597-609.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[3] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[4] 王浩源, 汪海洋, 孙建明, 陈以宽, 祁小桐, 唐博. 腹腔镜与开放修补对肝硬化腹外疝患者肝功能及凝血的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 654-659.
[5] 周正阳, 陈凯, 仇多良, 邵乐宁, 吴浩荣, 钟丰云. 腹腔镜腹股沟疝修补术后出血原因分析及处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 660-664.
[6] 杭轶, 杨小勇, 李文美, 薛磊. 可控性低中心静脉压技术在肝切除术中应用的最适中心静脉压[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 813-817.
[7] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[8] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[9] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[10] 吴广迎, 张延娟, 秦鹏, 卢艳丽. 经颈静脉肝内门体静脉分流术预防上消化道出血的临床研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 545-548.
[11] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[12] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[13] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[14] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
[15] 黄圣楷, 许斌, 苏健, 孙龙. 海南省2010~2020年乙型肝炎流行趋势的时间序列分析及预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 555-561.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?