切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2024, Vol. 14 ›› Issue (06) : 500 -506. doi: 10.3877/cma.j.issn.2095-2015.2024.06.004

论著

基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证
孙晗1, 于冰2,(), 武侠1, 周熙朗1   
  1. 1.221000 江苏省,徐州市中心医院消化内科
    2.221000 江苏省,徐州市民政精神病医院门诊
  • 收稿日期:2024-03-27 出版日期:2024-12-01
  • 通信作者: 于冰
  • 基金资助:
    徐州市卫生健康委科技计划青年项目(XWKYHT20230080)

Construction and validation of a predictive model for screening of colorectal cancer based on circulating tumor DNA methylation

Han Sun1, Bing Yu2,(), Xia Wu1, Xilang Zhou1   

  1. 1.Department of Gastroenterology,Xuzhou Central Hospital,Xuzhou 221000,China
    2.Department of Outpatient,Xuzhou Civil and Mental Hospital,Xuzhou 221000,China
  • Received:2024-03-27 Published:2024-12-01
  • Corresponding author: Bing Yu
引用本文:

孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.

Han Sun, Bing Yu, Xia Wu, Xilang Zhou. Construction and validation of a predictive model for screening of colorectal cancer based on circulating tumor DNA methylation[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2024, 14(06): 500-506.

目的

探讨循环肿瘤DNA(ctDNA)甲基化预测结直肠癌(CRC)模型构建与验证。

方法

2021 年8 月至2023 年7 月前瞻性收集徐州市中心医院收治的CRC 患者作为研究对象(CRC组),同时期年龄和性别匹配的健康体检者作为对照组。比较两组相关临床资料、血清ctDNA 甲基化水平;通过公共数据库“Marmal-aid”获得CRC 的DNA 甲基化标志物;通过LASSO 和RF 分析筛选DNA 甲基化标志物;通过ROC 曲线和Logistic 多因素回归分析,构建基于筛选的DNA 甲基化标志物预测CRC 的模型;通过训练队列和验证队列分别明确本模型对CRC 的预测效能。

结果

通过公共数据库进行筛选,共鉴定出3997 个差异性DNA 甲基化CpG(DMCs),并通过分层聚类和KEGG 显示出CRC 和正常结直肠黏膜在这些DMCs 中不同的甲基化模式及富集通路,并逐步筛选保留了19 个甲基化标志物。通过LASSO 和RF 分析评估了19 个标志物的稳定性,获得了3 个DNA甲基化标志物(cg08131100、cg16934178 和cg24171907),预测CRC 的AUC 分别为0.887、0.841和0.715。Logistic 回归分析显示,cg08131100、cg16934178 和cg24171907 是影响CRC 发病的独立危险因素;在训练队列和验证队列中,CRC 的甲基化评分均显著高于对照组;通过ROC 曲线评价甲基化模型预测CRC 的效能,模型在训练组AUC 为0.841(95% CI 0.756~0.927),模型在验证组AUC 为0.823(95% CI 0.728~0.919)。

结论

本研究基于ctDNA 甲基化构建了预测CRC 患者的模型,为CRC 的无创检测和筛查提供了具有临床转化意义的工具。

Objective

To investigate the construction and validation of a model for prediction of colorectal cancer (CRC) by circulating tumor DNA (ctDNA) methylation.

Methods

Prospectively enrolled colorectal cancer patients between August 2021 and July 2023 were selected as the study subjects(CRC group),and age-and gender-matched healthy medical check-ups in the same period served as the control group. The two groups were compared in terms of clinical data and serum ctDNA methylation levels; DNA methylation markers of CRC were obtained from the public database “Marmal-aid”; DNA methylation markers were screened by LASSO and RF analyses. The model of CRC prediction based on the screened DNA methylation markers was constructed by ROC curve and logistic multifactorial regression analysis; the prediction efficacy of the model for CRC was clarified by the training cohort and validation cohort,respectively.

Results

A total of 3997 differentially DNA methylated CpGs (DMCs)were identified by screening through public databases,and 19 methylation markers were retained by stepwise screening through hierarchical clustering and KEGG showing the different methylation patterns and enrichment pathways between CRC and normal colorectal mucosa in these DMCs. The stability of the 19 markers was assessed by LASSO and RF analyses,and three DNA methylation markers (cg08131100,cg16934178,and cg24171907) were obtained,with predicted AUCs of 0.887,0.841,and 0.715 for CRC,respectively. Logistic regression analyses showed that cg08131100,cg16934178 and cg24171907 were independent risk factors influencing the onset of CRC; the methylation scores of CRC were significantly higher than those of the control group in both the training and validation cohorts; and the efficacy of the methylation model in predicting CRC was evaluated by ROC curves,and the model had an AUC of 0.841 in the training group (95% CI: 0.756-0.927),and the AUC of the model in the validation group was 0.823 (95%CI: 0.728-0.919).

Conclusion

This study constructs a model for prediction of CRC patients based on ctDNA methylation,which provides a clinically translatable tool for noninvasive detection and screening of CRC.

表1 训练队列和验证队列临床资料的比较
图1 结直肠癌组和对照组之间差异DNA 甲基化CpG 的筛选 注:1A 火山图展示高表达的DNA 甲基化标志物;1B 低DNA 甲基化标志物的KEGG 通路富集分析;1C 高DNA 甲基化标志物的KEGG 通路富集分析。
表2 DNA 甲基化标志物筛选
图2 结直肠癌组和对照组之间差异DNA 甲基化CpG 的鉴定 注:2A LASSO 模型和RF 模型的重合标志物;2B 三种标志物预测结直肠癌的ROC 曲线。
表3 影响结直肠癌发病的多因素Logistic 回归分析
图3 对照组和结直肠癌组(CRC)甲基化评分的差异
图4 甲基化模型对结直肠癌预测的ROC 曲线
[1]
Siegel RL,Miller KD,Jemal A. Cancer statistics,2018[J]. CA Cancer J Clin,2018,68(1): 7-30.
[2]
Feng RM,Zong YN,Cao SM,et al. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics?[J].Cancer Commun(Lond),2019,39(1): 22.
[3]
Cai G,Cai M,Feng Z,et al. A Multilocus Blood-Based Assay Targeting Circulating Tumor DNA Methylation Enables Early Detection and Early Relapse Prediction of Colorectal Cancer[J].Gastroenterology,2021,161(6): 2053-2056. e2.
[4]
Desai S,Guddati AK. Carcinoembryonic Antigen,Carbohydrate Antigen 19-9,Cancer Antigen 125,Prostate-Specific Antigen and Other Cancer Markers: A Primer on Commonly Used Cancer Markers[J]. World J Oncol,2023,14(1): 4-14.
[5]
Wan JCM,Massie C,Garcia-Corbacho J,et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA[J]. Nat Rev Cancer,2017,17(4): 223-238.
[6]
Cohen JD,Li L,Wang Y,et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test[J].Science,2018,359(6378): 926-930.
[7]
Zhao B,Wang J,Sheng G,et al. Identifying a Risk Signature of Methylation-Driven Genes as a Predictor of Survival Outcome for Colon Cancer Patients[J]. Appl Biochem Biotechnol,2024,196(7):4156-4165.
[8]
Pu W,Wang C,Chen S,et al. Targeted bisulfite sequencing identified a panel of DNA methylation-based biomarkers for esophageal squamous cell carcinoma(ESCC)[J]. Clin Epigenetics,2017,9: 129.
[9]
Jensen SØ,Øgaard N,Ørntoft MW,et al. Novel DNA methylation biomarkers show high sensitivity and specificity for blood-based detection of colorectal cancer-a clinical biomarker discovery and validation study[J]. Clin Epigenetics,2019,11(1): 158.
[10]
Liang PS,Dominitz JA. Colorectal Cancer Screening: Is Colonoscopy the Best Option?[J]. Med Clin North Am,2019,103(1):111-123.
[11]
Liu Y,Fu B,Yu Z,et al. Identification of KRBA1 as a Potential Prognostic Biomarker Associated with Immune Infiltration and m6A Modification in Hepatocellular Carcinoma[J]. J Hepatocell Carcinoma,2022,9: 497-516.
[12]
Zhang W,Yang C,Wang S,et al. SDC2 and TFPI2 Methylation in Stool Samples as an Integrated Biomarker for Early Detection of Colorectal Cancer[J]. Cancer Manag Res,2021,13: 3601-3617.
[13]
Hu H,Chen X,Wang C,et al. The role of TFPI2 hypermethylation in the detection of gastric and colorectal cancer[J]. Oncotarget,2017,8(48): 84054-84065.
[14]
Bagheri H,Mosallaei M,Bagherpour B,et al. TFPI2 and NDRG4 gene promoter methylation analysis in peripheral blood mononuclear cells are novel epigenetic noninvasive biomarkers for colorectal cancer diagnosis[J]. J Gene Med,2020,22(8): e3189.
[15]
Sun X,Chen D,Jin Z,et al. Genome-wide methylation and expression profiling identify methylation-associated genes in colorectal cancer[J]. Epigenomics,2020,12(1): 19-36.
[16]
Xie L,Jiang X,Li Q,et al. Diagnostic Value of Methylated Septin9 for Colorectal Cancer Detection[J]. Front Oncol,2018,8: 247.
[17]
Liu L,Toung JM,Jassowicz AF,et al. Targeted methylation sequencing of plasma cell-free DNA for cancer detection and classification[J]. Ann Oncol,2018,29(6): 1445-1453.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[3] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[4] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[5] 李国煜, 丛赟, 祖丽胡马尔·麦麦提艾力, 何铁英. 急性胰腺炎并发门静脉系统血栓形成的危险因素及预测模型构建[J]. 中华普通外科学文献(电子版), 2024, 18(04): 266-270.
[6] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[7] 袁庆港, 刘理想, 张亮, 周世振, 高波, 丁超, 管文贤. 尿素-肌酐比值(UCR)可预测结直肠癌患者术后的长期预后[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 506-509.
[8] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[9] 犹成亿, 尤恒, 叶东樊, 张雯, 刘禹, 王仁宇, 苏琳茜, 甘慧, 徐智. 基于3D Res U-Net-Faster RCNN 技术和CT 影像学特征的肺结节性质预测模型的建立[J]. 中华肺部疾病杂志(电子版), 2024, 17(05): 673-679.
[10] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[11] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[12] 陈倩倩, 袁晨, 刘基, 尹婷婷. 多层螺旋CT 参数、癌胚抗原、错配修复基因及病理指标对结直肠癌预后的影响[J]. 中华消化病与影像杂志(电子版), 2024, 14(06): 507-511.
[13] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J]. 中华临床医师杂志(电子版), 2024, 18(08): 724-730.
[14] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J]. 中华临床医师杂志(电子版), 2024, 18(08): 717-723.
[15] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
阅读次数
全文


摘要