切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2025, Vol. 15 ›› Issue (04) : 326 -333. doi: 10.3877/cma.j.issn.2095-2015.2025.04.007

论著

乌司他丁抑制JAK2/STAT3介导的细胞焦亡在减轻重症急性胰腺炎大鼠肠黏膜屏障损伤的作用
张檀檀1, 王胤2, 吴炜1, 过之一1, 秦晓雯1, 梁海1,()   
  1. 1236800 安徽省,亳州市人民医院(安徽医科大学附属亳州医院)药学部
    2236800 安徽省,亳州市人民医院(安徽医科大学附属亳州医院)消化内科
  • 收稿日期:2025-02-08 出版日期:2025-08-01
  • 通信作者: 梁海
  • 基金资助:
    亳州市重点研发计划项目(bzzc2021023); 安徽省重点研究与开发计划项目(2022e07020066)

Ulinastatin alleviates intestinal mucosal barrier injury in rats with severe acute pancreatitis by inhibiting JAK2/STAT3 mediated pyroptosis

Tantan Zhang1, Yin Wang2, Wei Wu1, Zhiyi Guo1, Xiaowen Qin1, Hai Liang1,()   

  1. 1Department of Pharmacy, Bozhou People's Hospital (Bozhou Hospital Affiliated to Anhui Medical University), Bozhou 236800, China
    2Department of Gastroenterology, Bozhou People's Hospital (Bozhou Hospital Affiliated to Anhui Medical University), Bozhou 236800, China
  • Received:2025-02-08 Published:2025-08-01
  • Corresponding author: Hai Liang
引用本文:

张檀檀, 王胤, 吴炜, 过之一, 秦晓雯, 梁海. 乌司他丁抑制JAK2/STAT3介导的细胞焦亡在减轻重症急性胰腺炎大鼠肠黏膜屏障损伤的作用[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 326-333.

Tantan Zhang, Yin Wang, Wei Wu, Zhiyi Guo, Xiaowen Qin, Hai Liang. Ulinastatin alleviates intestinal mucosal barrier injury in rats with severe acute pancreatitis by inhibiting JAK2/STAT3 mediated pyroptosis[J/OL]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2025, 15(04): 326-333.

目的

观察乌司他丁抑制酪氨酸激酶2/信号转导和转录激活因子3(JAK2/STAT3)介导的细胞焦亡减轻重症急性胰腺炎(SAP)大鼠肠黏膜屏障损伤的效果。

方法

采用随机数字表法将72只SD大鼠随机分为假手术组、SAP模型组、低剂量乌司他丁组(5000 U/kg)、中剂量乌司他丁组(10 000 U/kg)、高剂量乌司他丁组(30 000 U/kg)和高剂量乌司他丁+BE(Broussonin E,JAK2激活剂)组(30 000 U/kg+Broussonin E),每组12只。除假手术组外,其余4组均采用胰管注射5%牛磺胆酸钠建立SAP大鼠模型。造模后0、6、12 h,低剂量乌司他丁组、中剂量乌司他丁组、高剂量乌司他丁组、高剂量乌司他丁+BE组大鼠腹腔注射相应剂量药物,假手术组和SAP模型组腹腔注射等量PBS。建模24 h后测量腹水量及胰腺、肠组织干湿质量比;HE染色观察胰腺和肠黏膜组织病理变化;ELISA检测血清肿瘤坏死因子-α(TNF-α)、白细胞介素(IL)-1β、IL-18、二胺氧化酶(DAO)和肠脂肪酸结合蛋白(IFABP)水平;免疫组化和Western blot检测肠黏膜组织JAK2、STAT3、裂解半胱氨酸天冬氨酸特异性蛋白酶1(cleaved-caspase-1)、Gasdermin D-N(GSDMD-N)阳性细胞与蛋白表达。在病理评分(Schmidt、Chiu's评分)和数据测量过程中对实验人员实施盲法。

结果

与假手术组比较,SAP模型组胰腺和肠干湿质量比均降低,病理评分(Schmidt、Chiu's评分)、血清指标(TNF-α、IL-1β、IL-18、DAO、IFABP)及JAK2、STAT3、cleaved-caspase-1、GSDMD-N阳性细胞表达与蛋白水平显著升高(均P<0.05);与SAP模型组比较,乌司他丁治疗大鼠腹水量、病理评分、血清指标及JAK2、STAT3、cleaved-caspase-1、GSDMD-N阳性细胞表达与蛋白水平显著减少,胰腺和肠干湿质量比升高,且呈剂量依赖性(均P<0.05);相较于高剂量乌司他丁组,高剂量乌司他丁+BE组大鼠腹水量、病理评分、血清指标及JAK2、STAT3、cleaved-caspase-1、GSDMD-N阳性细胞表达与蛋白水平显著升高,胰腺和肠干湿质量比降低(均P<0.05)。

结论

乌司他丁剂量依赖性抑制JAK2/STAT3介导的肠道细胞焦亡,改善SAP大鼠肠黏膜炎性反应,减轻黏膜屏障损伤,30 000 U/kg剂量最佳。

Objective

To investigate the effect of ulinastatin on Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3)-mediated pyroptosis alleviates intestinal mucosal barrier injury in rats with severe acute pancreatitis (SAP).

Methods

Using the random number table method, 72 SD rats were randomly divided into sham operation group, SAP model group, low-dose ulinastatin group (5 000 U/kg), medium-dose ulinastatin group (10 000 U/kg), high-dose ulinastatin group (30 000 U/kg) and high-dose ulinastatin+BE (Broussonin E, JAK2 activator) group (30 000 U/kg+Broussonin E), 12 animals in each group. Except for the sham operation group, the other four groups were injected with 5% sodium taurocholate through the pancreatic duct to establish the SAP rat model. At 0, 6 and 12 h after modeling, the rats in low-dose ulinastatin group, middle-dose ulinastatin group, high-dose ulinastatin group, and high-dose ulinastatin+BE group were intraperitoneally injected with corresponding doses of drugs, and the rats in sham operation group and SAP model group were intraperitoneally injected with the same volume of PBS. After 24 hours of modeling, the ascites volume and the dry/wet mass ratio of pancreatic and intestinal tissues were measured; HE staining was used to observe the pathological changes of pancreatic and intestinal mucosa tissues; ELISA was used to detect serum tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-18, diamine oxidase (DAO) and intestinal fatty acid binding protein (IFABP) levels; immunohistochemical method and WB were used to detect the positive cells and protein expression of JAK2, STAT3, cleaved-caspase-1, and Gasdermin D-N (GSDMD-N). The experimenter was blinded during pathological scoring (Schmidt score, Chiu's score) and data measurement.

Results

Compared with the sham operation group, the SAP model group had the lower pancreas and intestinal dry/wet mass ratio, pathological scores (Schmidt score, Chiu’s score), serum indicators (TNF-α, IL-1β, IL-18, DAO, IFABP) and JAK2, STAT3, cleaved-caspase-1, GSDMD-N positive cell expression and protein levels were significantly increased (all P<0.05). Compared with the SAP model group, the ascites volume, pathological scores, serum indicators, and positive cell expression and protein levels of JAK2, STAT3, cleaved-caspase-1 and GSDMD-N in rats treated with ulinastatin significantly reduced, and the dry/wet mass ratio of pancreas and intestine was increased in a dose-dependent manner (all P<0.05). Compared with the high-dose ulinastatin group, the ascites volume, pathological score, serum indexes, the positive cell expression and protein levels of JAK2, STAT3, cleaved-caspase-1 and GSDMD-N in the high-dose ulinastatin+BE group were significantly increased, and the dry/wet mass ratio of pancreas and intestine was decreased (all P<0.05).

Conclusion

Ulinastatin dose-dependently inhibits JAK2/STAT3 mediated intestinal cell pyroptosis, improves the inflammatory response of intestinal mucosa in SAP rats, and reduces mucosal barrier damage, with the optimal dose of 30 000 U/kg.

表1 各组大鼠腹水及组织干湿重比( ± s
图1 各组大鼠胰腺组织病理变化(HE染色)
图2 各组大鼠肠黏膜组织病理变化(HE染色)
表2 各组大鼠Schmidt评分和Chiu's评分( ± s
图3 各组大鼠血清炎症因子表达注:TNF-α肿瘤坏死因子-α;IL白细胞介素;SAP重症急性胰腺炎;*P<0.05;***P<0.001
表3 各组大鼠肠黏膜屏障损伤情况( ± s
图4 各组大鼠肠黏膜组织免疫组化染色注:JAK2酪氨酸激酶2;STAT3信号转导和转录激活因子3;cleaved-caspase-1裂解半胱氨酸天冬氨酸特异性蛋白酶1;SAP重症急性胰腺炎
图5 各组大鼠肠黏膜组织JAK2、STAT3、cleaved-caspase-1、Gasdermin D-N蛋白表达注:JAK2酪氨酸激酶2;STAT3信号转导和转录激活因子3;cleaved-caspase-1裂解半胱氨酸天冬氨酸特异性蛋白酶1;SAP重症急性胰腺炎
表4 各组大鼠肠黏膜组织JAK2、STAT3、cleaved-caspase-1、Gasdermin D-N蛋白表达( ± s
[1]
Banks PA, Bollen TL, Dervenis C, et al. Acute Pancreatitis Classification Working Group. Classification of acute pancreatitis-2012: revision of the Atlanta classification and definitions by international consensus[J]. Gut, 2013, ;62(1): 102-111.
[2]
Lin J, Han C, Dai N, et al. Effectiveness of Chengqi-series decoctions in treating severe acute pancreatitis: A Systematic review and meta-analysis[J]. Phytomedicine, 2023, 113: 154727.
[3]
Huang L, Zhang D, Han W, et al. High-mobility group box-1 inhibition stabilizes intestinal permeability through tight junctions in experimental acute necrotizing pancreatitis[J]. Inflamm Res, 2019, 68(8): 677-689.
[4]
Li HY, Lin YJ, Zhang L, et al. Autophagy in intestinal injury caused by severe acute pancreatitis[J]. Chin Med J(Engl), 2021, 134(21): 2547-2549.
[5]
Teodoro T, Odisho T, Sidorova E, et al. Pancreatic β-cells depend on basal expression of active ATF6α-p50 for cell survival even under nonstress conditions[J]. Am J Physiol Cell Physiol, 2012, 302(7): C992-1003.
[6]
Wang SQ, Jiao W, Zhang J, et al. Ulinastatin in the treatment of severe acute pancreatitis: A single-center randomized controlled trial[J]. World J Clin Cases, 2023, 11(19): 4601-4611.
[7]
Feng C, Su X, Chen LI, et al. Ulinastatin enhances the therapeutic effect of intraperitoneal lavage on severe acute pancreatitis in rats[J]. Exp Ther Med, 2015, 9(5): 1651-1655.
[8]
刘梅, 谷玥, 张家玮, 等. 乌司他丁对大鼠重症急性胰腺炎肠黏膜屏障功能的影响[J]. 中国老年学杂志, 2017, 37(14): 3436-3437.
[9]
Chen B, Ning K, Sun ML, et al. Regulation and therapy, the role of JAK2/STAT3 signaling pathway in OA: a systematic review[J]. Cell Commun Signal, 2023, 21(1): 67.
[10]
Li M, Zhang X, Wang B, et al. Effect of JAK2/STAT3 signaling pathway on liver injury associated with severe acute pancreatitis in rats[J]. Exp Ther Med, 2018, 16(3): 2013-2021.
[11]
Piao X, Sui X, Liu B, et al. Picroside II Improves Severe Acute Pancreatitis-Induced Hepatocellular Injury in Rats by Affecting JAK2/STAT3 Phosphorylation Signaling[J]. Biomed Res Int, 2021, 2021: 9945149.
[12]
Liu M, Li Y, Kong B, et al. Polydatin down-regulates the phosphorylation level of STAT3 and induces pyroptosis in triple-negative breast cancer mice with a high-fat diet[J]. Ann Transl Med, 2022, 10(4): 173.
[13]
Laukkarinen JM, Van Acker GJ, Weiss ER, et al. A mouse model of acute biliary pancreatitis induced by retrograde pancreatic duct infusion of Na-taurocholate[J]. Gut, 2007, 56(11): 1590-1598.
[14]
Liu RH, Wen Y, Sun HY, et al. Abdominal paracentesis drainage ameliorates severe acute pancreatitis in rats by regulating the polarization of peritoneal macrophages[J]. World J Gastroenterol, 2018, 24(45): 5131-5143.
[15]
Pan Y, Fang H, Lu F, et al. Ulinastatin ameliorates tissue damage of severe acute pancreatitis through modulating regulatory T cells[J]. J Inflamm(Lond), 2017, 14: 7.
[16]
肖懿, 冯志乔, 张桂贤, 等. 血必净注射液调节线粒体N-甲酰肽/NLRP3炎症通路对重症急性胰腺炎大鼠模型的治疗机制[J]. 中国实验方剂学杂志, 2022, 28(7): 88-94.
[17]
刘克玄, 吴伟康, 何威, 等. 四逆汤对大鼠肠缺血再灌注损伤后肠黏膜的保护效应[J]. 中国中药杂志, 2006, 31(4): 329-332348.
[18]
Li F, Wang Z, Cao Y, et al. Intestinal Mucosal Immune Barrier: A Powerful Firewall Against Severe Acute Pancreatitis-Associated Acute Lung Injury via the Gut-Lung Axis[J]. J Inflamm Res, 2024, 17: 2173-2193.
[19]
Zhuang Q, Huang L, Zeng Y, et al. Dynamic Monitoring of Immunoinflammatory Response Identifies Immunoswitching Characteristics of Severe Acute Pancreatitis in Rats[J]. Front Immunol, 2022, 13: 876168.
[20]
Mowat AM, Agace WW. Regional specialization within the intestinal immune system[J]. Nat Rev Immunol, 2014, 14(10): 667-685.
[21]
Stojanovic B, Jovanovic IP, Stojanovic MD, et al. The Emerging Roles of the Adaptive Immune Response in Acute Pancreatitis[J]. Cells, 2023, 12(11): 1495.
[22]
Perez-Lopez A, Behnsen J, Nuccio SP, et al. Mucosal immunity to pathogenic intestinal bacteria[J]. Nat Rev Immunol, 201, 16(3): 135-148.
[23]
童瑶娣, 钟万鄂. 乌司他丁对老年重症胰腺炎患者腹内高压及肠道黏膜屏障功能的影响[J]. 中国现代医学杂志, 2014, 24(10): 3.
[24]
Panda SP, Kesharwani A, Datta S, et al. JAK2/STAT3 as a new potential target to manage neurodegenerative diseases: An interactive review[J]. Eur J Pharmacol, 2024, 970: 176490.
[25]
Peña G, Cai B, Liu J, et al. Unphosphorylated STAT3 modulates alpha 7 nicotinic receptor signaling and cytokine production in sepsis[J]. Eur J Immunol, 2010, 40(9): 2580-2589.
[26]
Yang S, Song Y, Wang Q, et al. Daphnetin ameliorates acute lung injury in mice with severe acute pancreatitis by inhibiting the JAK2-STAT3 pathway[J]. Sci Rep, 2021, 11(1): 11491.
[27]
Xia T, Gu Y, Shen J, et al. Limonin ameliorates acute pancreatitis by suppressing JAK2/STAT3 signaling pathway[J]. Environ Toxicol, 2021, 36(12): 2392-2403.
[28]
Peng Y, Yang Y, Li Y, et al. Mitochondrial(mt)DNA-cyclic GMP-AMP synthase(cGAS)-stimulator of interferon genes(STING) signaling promotes pyroptosis of macrophages via interferon regulatory factor(IRF)7/IRF3 activation to aggravate lung injury during severe acute pancreatitis[J]. Cell Mol Biol Lett, 2024, 29(1): 61.
[29]
Zhang Q, Sun W, Wang Q, et al. A High MCT-Based Ketogenic Diet Suppresses Th1 and Th17 Responses to Ameliorate Experimental Autoimmune Encephalomyelitis in Mice by Inhibiting GSDMD and JAK2-STAT3/4 Pathways[J]. Mol Nutr Food Res, 2024, 68(3): e2300602.
[30]
Liang Y, Li Y, Zhang K, et al. Qingfei Jiedu Huatan Formula inhibits NLRP3 inflammasome activation to attenuates inflammation and pyroptosis in severe pneumonia: Integrating experimental verification, network pharmacology and transcriptomics[J]. J Ethnopharmacol, 2025, 343: 119449.
[31]
Lyu S, Liu S, Guo X, et al. hP-MSCs attenuate severe acute pancreatitis in mice via inhibiting NLRP3 inflammasome-mediated acinar cell pyroptosis[J]. Apoptosis, 2024, 29(5/6): 920-933.
[32]
Lin T, Peng M, Zhu Q, et al. S1PR2 participates in intestinal injury in severe acute pancreatitis by regulating macrophage pyroptosis[J]. Front Immunol, 2024, 15: 1405622.
[33]
Huang B, Lin G, Chen F, et al. UCP2 knockout exacerbates sepsis-induced intestinal injury by promoting NLRP3-mediated pyroptosis[J]. Int Immunopharmacol, 2024, 141: 112935.
[34]
Huang W, Zhang H, Wang L, et al. Ulinastatin attenuates renal ischemia-reperfusion injury by inhibiting NLRP3 inflammasome-triggered pyroptosis[J]. Int Immunopharmacol, 2024, 143(Pt 1): 113306.
[1] 陆婷, 范晴敏, 王洁, 万晓静, 许春芳, 董凤林. 超声引导下经皮穿刺置管引流对重症急性胰腺炎的疗效及应用时机的选择[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 511-516.
[2] 龙飞宇, 祝鑫蕊, 伍佳莉, 晏丕军, 王茂华. 乌司他丁通过抑制NOD样受体热蛋白结构域相关蛋白3炎症小体激活保护脓毒症相关肺损伤[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(03): 189-196.
[3] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[4] 廖泽楷, 梁爱琳, 龚启梅. 根尖周病中程序性细胞死亡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 150-155.
[5] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[6] 党军强, 杨雁灵, 汪庆强, 尚琳, 朱磊, 项红军. 主动经皮穿刺引流治疗重症急性胰腺炎并发急性坏死物积聚的疗效分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 671-674.
[7] 谢开晶, 张迅, 王耀丽. 创伤后脓毒症:不可忽视的严重并发症[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1048-1052.
[8] 张佳男, 王焕亮, 王文婷, 陈津. SMC4 在低氧诱导的肺动脉高压中通过NEMO/NLRP3 通路诱导细胞焦亡[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 139-147.
[9] 黄菊, 王猛, 韩冬. 双氢青蒿素通过JAK2/STAT3信号通路调节结直肠癌细胞的增殖、迁移、凋亡和免疫相关分子研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(04): 319-332.
[10] 姬震震, 李志坚. 含半胱氨酸的天冬氨酸蛋白水解酶1介导细胞焦亡在眼科领域的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(05): 310-315.
[11] 张瑜廉, 党韩寒, 张传鹏, 何昆, 陈鹏宇, 张昀昇, 王在, 张黎, 于炎冰. 创伤性脑损伤急性期细胞焦亡关键分子的竞争性内源性RNA调控网络构建与验证[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(01): 5-16.
[12] 宋燕秋, 戚桂艳, 杨双双, 周萍. 重症急性胰腺炎肠道菌群特征及早期肠内营养联合微生态制剂治疗的临床价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 442-447.
[13] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[14] 徐清华, 张振林, 李浩. 清胰汤联合乌司他丁对急性胰腺炎患者肠道功能恢复及炎性因子水平的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 253-257.
[15] 丁洪基, 赵长江, 孙鹏飞, 王灿, 王贵珍, 李龙龙. 细胞焦亡与疾病的关系研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 682-686.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?