切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2025, Vol. 15 ›› Issue (05) : 467 -473. doi: 10.3877/cma.j.issn.2095-2015.2025.05.009

论著

肝癌大范围肝切除患者术后骨骼肌减少的列线图预测模型构建及临床验证
朱永慧(), 桑迪, 宋佳   
  1. 250031 济南,山东省立第三医院肝胆外二科
  • 收稿日期:2025-10-17 出版日期:2025-10-01
  • 通信作者: 朱永慧

Construction and clinical validation of a nomogram prediction model for postoperative skeletal muscle reduction in patients undergoing extensive hepatectomy for liver cancer

Yonghui Zhu(), Di Sang, Jia Song   

  1. Second Department of Hepatobiliary Surgery, Shandong·Provincial·Third Hospital, Jinan 250031, China
  • Received:2025-10-17 Published:2025-10-01
  • Corresponding author: Yonghui Zhu
引用本文:

朱永慧, 桑迪, 宋佳. 肝癌大范围肝切除患者术后骨骼肌减少的列线图预测模型构建及临床验证[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 467-473.

Yonghui Zhu, Di Sang, Jia Song. Construction and clinical validation of a nomogram prediction model for postoperative skeletal muscle reduction in patients undergoing extensive hepatectomy for liver cancer[J/OL]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2025, 15(05): 467-473.

目的

构建肝癌大范围肝切除患者术后骨骼肌减少的风险因素模型,并验证其应用效果。

方法

回顾性分析2019年3月至2021年3月山东省立第三医院收治的260例肝癌大范围切除患者临床资料,采用随机数字表法,将所有患者按照7∶3比例分别纳入训练组(n=182)、验证组(n=78)。使用CT影像学测量评估其骨骼肌减少情况,比较训练组(n=182)骨骼肌减少和未见减少患者临床资料差异。使用Logistic多因素回归分析,归纳肝癌大范围切除患者术后骨骼肌减少的风险因素,并将风险因素纳入Nomogram预测模型;绘制预测模型预测验证组患者肝癌大范围切除患者术后骨骼肌减少的受试者工作特征曲线(ROC),使用临床决策曲线分析(DCA)用于验证模型的临床实用价值。随访至术后3年,通过门诊复查及电话随访记录患者生存状态,采用Kaplan-Meier法评估骨骼肌减少对总生存期的影响,Cox比例风险模型校正手术时间等混杂因素。

结果

训练组、验证组术后骨骼肌减少发生率分别为42.31%(33/78)、44.51%(81/182),差异无统计学意义(P>0.05)。训练组中术后骨骼肌指数变化率≤-3.6%的为骨骼肌肉减少组(n=81),其余101例为骨骼肌肉正常组。骨骼肌肉减少组、骨骼肌肉正常组术前肌肉减少症发生率、术后WBC水平、手术时间、失血量、微血管侵犯、并发切口感染发生率、并发器官/腔隙感染发生率、并发菌血症发生率比较,差异有统计学意义(P<0.05)。Logistic多因素分析显示,术前肌肉减少症、WBC水平、手术时间、失血量、微血管侵犯、并发切口感染、并发器官/腔隙感染、并发菌血症,均为影响肝癌大范围切除患者术后骨骼肌减少的独立危险因素(P<0.05)。模型在训练组和验证组的曲线下面积(AUC)分别为0.853(95% CI 0.802~0.904)和0.808(95% CI 0.721~0.895)。验证组的灵敏度、特异性分别为80.66%和81.30%。采用Hosmer-Lemeshow拟合优度检验评估校准度,训练组(χ2=6.32,P=0.612)和验证组(χ2=5.84,P=0.665)均显示良好的校准性能,DCA分析示模型临床净收益率较高。随访时,存活的患者中位随访时间为28个月,总队列的中位总生存期为35.7个月。单变量分析中,骨骼肌肉减少组的总生存期较短于骨骼肌肉正常组(P=0.014)。多因素分析显示骨骼肌减少是术后死亡的独立危险因素(P<0.001)。

结论

肝癌大范围切除患者术后骨骼肌减少风险较高,且与患者术前肌肉减少症、炎症反应、手术时间、失血量、微血管侵犯、并发症等因素有关,基于上述因素建立的预测模型能够为患者肝癌大范围切除患者术后骨骼肌减少风险评估提供可靠参考。

Objective

To construct a risk factor model for postoperative skeletal muscle reduction in patients undergoing extensive hepatectomy for liver cancer and verify its application effect.

Methods

A retrospective analysis was conducted on the clinical data of 260 patients with extensive resection of liver cancer admitted to Shandong Provincial Third Hospital from March 2019 to March 2021, using the random number table method, all patients were included in the training group (n=182) and the validation group (n=78) in a ratio of 7∶3 respectively. CT imaging was used to evaluate the reduction of skeletal muscle, and the differences in clinical data between patients with and without skeletal muscle reduction in the training group (n=182) were compared. Logistic multivariate regression analysis was used to summarize the risk factors of postoperative skeletal muscle reduction in patients with extensive resection of liver cancer, and the risk factors were incorporated into the Nomogram prediction model. The receiver operating characteristic (ROC) curve of the predictive model for predicting postoperative skeletal muscle reduction in patients with extensive resection of liver cancer in the validation group was drawn, and the clinical decision curve analysis (DCA) was used to verify the clinical practical value of the model. The patients were followed up until 3 years after the operation. The survival status of the patients was recorded through outpatient reexamination and telephone follow-up, the Kaplan-Meier method was used to evaluate the impact of skeletal muscle reduction on overall survival, and the Cox proportional hazards model was used to correct for confounding factors such as operation time.

Results

The incidences of postoperative skeletal muscle reduction in the training group and the validation group were 42.31% (33/78) and 44.51% (81/182), respectively, there was no statistically significant difference between the groups (P>0.05). In the training group, those with a postoperative skeletal muscle index change rate of ≤-3.6% were classified as the musculoskeletal reduction group (n=81), and the remaining 101 cases were classified as the normal musculoskeletal group. The incidences of preoperative muscle atrophy, postoperative WBC levels, operation time, blood loss volume, microvascular invasion, incidence of concurrent incision infection, incidence of concurrent organ/cavity infection, and incidence of concurrent bacteremia in the skeletal muscle reduction group and the skeletal muscle normal group were compared, with statistically significant differences (P<0.05). Logistic multivariate analysis showed that preoperative sarcopenia, WBC level, operation time, blood loss, microvascular invasion, concurrent incision infection, concurrent organ/cavity infection, and concurrent bacteremia were all independent risk factors affecting postoperative skeletal muscle reduction in patients with extensive resection of liver cancer (P<0.05). The area under the curve (AUC) of the model in the training group and the validation group was 0.853 (95% CI: 0.802-0.904) and 0.808 (95% CI: 0.721-0.895), respectively. The sensitivity and specificity of the validation group were 80.66% and 81.30%, respectively. The Hosmer-Lemeshow goodness-fit test was used to evaluate the calibration degree. Both the training group (χ2=6.32, P=0.612) and the validation group (χ2=5.84, P=0.665) showed good calibration performance, and DCA analysis indicated that the model had a high clinical net rate of return. At the follow-up, the median follow-up time for the surviving patients was 28 months, and the median overall survival of the total cohort was 35.7 months. In the univariate analysis, the overall survival period of the skeletal muscle reduction group was shorter than that of the normal skeletal muscle group (P=0.014). Multivariate analysis showed that skeletal muscle reduction was an independent risk factor for postoperative death (P<0.001).

Conclusion

Patients with extensive resection of liver cancer have a relatively high risk of postoperative skeletal muscle reduction, which is related to factors such as preoperative sarcopenia, inflammatory response, operation time, blood loss, microvascular invasion, and complications. The prediction model established based on the above factors can provide a reliable reference for the risk assessment of postoperative skeletal muscle reduction in patients with extensive resection of liver cancer.

图1 第三腰椎下缘CT图像
表1 2组肝癌患者临床资料比较
表2 术后骨骼肌肉减少组、骨骼肌肉正常组临床资料比较
临床资料 骨骼肌肉减少组(n=81) 骨骼肌肉正常组(n=101) t/χ2 P
性别[例(%)] 40(49.38) 51(50.50) 0.052 0.820
  41(50.62) 50(50.50)
年龄(岁,±s)   56.45±5.23 56.31±5.20 0.183 0.855
体重指数(kg/m2,±s)   22.73±1.45 22.65±1.43 0.387 0.699
病理类型[例(%)] 肝细胞型 71(87.65) 94(93.07) 1.557 0.212
  肝胆管细胞型 10(12.35) 7(6.93)
术前肌肉减少症[例(%)] 47(58.03) 40(39.60) 7.388 0.006
  34(41.97) 61(60.40)
病毒性肝炎[例(%)] 35(43.21) 36(35.64) 1.089 0.297
  46(56.79) 65(64.36)
术前肝硬化[例(%)] 30(37.04) 28(27.72) 1.343 0.246
  51(62.96) 73(72.28)
Child-Pugh分级[例(%)] A 61(75.31) 82(81.19) 6.190 0.053
  B 20(24.69) 19(18.81)
剩余肝体积(%,±s)   48.41±5.23 48.29±5.35 0.153 0.879
术后实验室指标(±s) WBC(×109/L) 8.81±2.52 7.86±1.14 3.621 <0.001
  Hb(g/L) 116.81±5.99 115.12±5.67 1.947 0.053
  PLT(×109/L) 155.24±60.59 152.71±60.34 0.286 0.775
  NEU(×109/L) 4.35±1.22 4.29±1.74 0.270 0.788
  TBil(μmol/L) 27.15±6.22 28.09±7.74 -0.898 0.370
  Alb(g/L) 37.81±6.96 37.47±5.59 0.383 0.702
  FIB(g/L) 3.51±0.52 3.26±0.44 9.112 0.541
  LDH(U/L) 287.81±56.99 283.12±60.67 0.547 0.585
  ALT(U/L) 59.24±20.59 59.71±20.34 -0.157 0.875
  AST(U/L) 57.15±12.22 57.09±15.74 0.027 0.979
手术方式[例(%)]       5.842 0.212
  左半肝切除术 24(29.63) 42(41.58)    
  右半肝切除术 30(37.04) 43(42.57)    
  左三叶切除术 11(13.58) 9(8.91)    
  左半肝+S1段切除术 7(8.64) 2(1.98)    
  右半肝+S1段切除术 9(11.11) 5(4.95)    
手术时间(min,±s)   220.24±70.59 192.71±40.34 3.219 0.001
失血量(mL,±s)   510.15±200.22 417.09±162.74 3.432 0.001
输血[例(%)]   27(33.33) 27(26.73) 0.946 0.331
微血管侵犯[例(%)]   35(43.21) 21(20.79) 10.769 0.001
住院时间(d,±s)   13.81±3.96 13.47±2.59 2.843 0.505
并发切口感染[例(%)]   30(37.04) 11(10.89) 17.768 <0.001
并发器官/腔隙感染[例(%)]   36(44.44) 18(17.82) 14.788 <0.001
并发出血[例(%)]   23(28.39) 18(17.82) 2.898 0.089
并发肝衰竭[例(%)]   8(9.88) 0(0) 13.244 0.061
并发血栓[例(%)]   9(11.11) 0(0) 10.126 0.051
并发菌血症[例(%)]   27(33.33) 7(6.93) 20.127 <0.001
表3 影响肝癌大范围切除患者术后骨骼肌减少的多因素回归分析结果
图2 肝癌大范围切除患者术后骨骼肌减少的Nomogram模型
图3 Nomogram模型应用于验证组的ROC曲线
图4 Nomogram模型应用于验证组的DCA曲线
表4 Nomogram模型预测肝癌大范围切除患者术后骨骼肌减少的效能分析(%)
图5 骨骼肌减少组和骨骼肌肉正常组的生存曲线图
表5 术后骨骼肌减少与总生存率的单因素和多因素分析
[1]
Cheng K, Cai N, Zhu J, et al. Tumor-associated macrophages in liver cancer: From mechanisms to therapy[J]. Cancer Commun(Lond), 2022, 42(11): 1112-1140.
[2]
马世辉, 崔云甫. 肝内胆管癌的分型及综合治疗现状[J]. 腹部外科, 2024, 37(3): 161-168.
[3]
Yang J, Wang D, Ma L, et al. Sarcopenia negatively affects postoperative short-term outcomes of patients with non-cirrhosis liver cancer[J]. BMC Cancer, 2023, 23(1): 212.
[4]
Park SJ, Yoon JH, Joo I, et al. Newly developed sarcopenia after liver transplantation, determined by a fully automated 3D muscle volume estimation on abdominal CT, can predict post-transplant diabetes mellitus and poor survival outcomes[J]. Cancer Imaging, 2023, 23(1): 73.
[5]
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版)[J]. 临床肝胆病杂志, 2020, 36(2): 277-292.
[6]
Bajrić T, Kornprat P, Faschinger F, et al. Sarcopenia and primary tumor location influence patients outcome after liver resection for colorectal liver metastases[J]. Eur J Surg Oncol, 2022, 48(3): 615-620.
[7]
Arntz PJW, Olthof PB, Korenblik R, et al. Effect of Sarcopenia on the Increase in Liver Volume and Function After Portal Vein Embolization[J]. Cardiovasc Intervent Radiol, 2024, 47(5): 642-649.
[8]
Wu MY, Yeh CH, Liao CC, et al. Sarcopenia Affects Liver Regeneration and Long-Term Survival Rate After Living-Donor Liver Transplantation in Patients With Hepatocellular Carcinoma[J]. Transplant Proc, 2024, 56(3): 573-580.
[9]
何崇保, 庞勇, 唐煌. IVIM-DWI及多层螺旋CT与肝细胞肝癌微血管侵犯的相关性分析[J]. 中国CT和MRI杂志, 2024, 22(1): 103-106.
[10]
Gagnat G, Hobeika C, Modzelewski R, et al. Evaluation of sarcopenia biomarkers in older patients undergoing major surgery for digestive cancer. SAXO prospective cohort study[J]. Eur J Surg Oncol, 2023;49(1): 285-292.
[11]
Ziogas IA, Thielen ON, Ghaffar SA, et al. The Role of Metastasectomy in Patients with Liver-Only Metastases from Gastric Adenocarcinoma[J]. Ann Surg Oncol, 2025, 32(1): 391-398.
[12]
张司马康, 周春高, 施海彬, 等. 骨骼肌质量指数对TACE治疗肝癌的预测价值[J]. 介入放射学杂志, 2022, 31(12): 1170-1173.
[13]
Maeda Y, Miyamoto Y, Ohuchi M, et al. Impact of Preoperative Skeletal Muscle Mass on Prognosis and Postoperative Change in Patients With Gastrointestinal Cancer[J]. World J Surg, 2025, 49(6): 1600-1610.
[14]
Abe S, Kawai K, Nozawa H, et al. Preoperative sarcopenia is a poor prognostic factor in lower rectal cancer patients undergoing neoadjuvant chemoradiotherapy: a retrospective study[J]. Int J Clin Oncol, 2022, 27(1): 141-153.
[15]
Fujinaga A, Takamoto T, Minezaki S, et al. Delayed Liver Function Recovery After Right Hepatectomy for Metastatic Liver Tumors: Incidence, Risk Factors, and Impact on Prognosis[J]. World J Surg, 2025, 49(5): 1317-1326.
[16]
Menozzi R, Valoriani F, Ballarin R, et al. Impact of Nutritional Status on Postoperative Outcomes in Cancer Patients following Elective Pancreatic Surgery[J]. Nutrients, 2023, 15(8): 1958.
[17]
高德康, 危少华, 马孝明, 等. 肝癌大范围肝切除术后骨骼肌减少的危险因素及其与术后并发症的相关性研究[J]. 中国全科医学, 2023, 26(32): 4031-4037.
[18]
Rashid Z, Altaf A, Khalil M, et al. Textbook outcome in liver surgery after staged versus simultaneous resection for synchronous colorectal liver metastases[J]. HPB(Oxford), 2025, 27(8): 1078-1086.
[19]
熊柏柱, 侯昌龙, 高飞, 等. 定量CT评估肌肉减少症和脂肪组织含量与肝癌TACE联合PD-1单抗治疗预后的相关性[J]. 放射学实践, 2024, 39(3): 399-404.
[20]
Lei S, Zhang Q, Zhang Q, et al. The Systemic Immune Inflammation Index(SII) Combined with the Creatinine-to-Cystatin C Ratio (Cre/CysC) Predicts Sarcopenia in Patients with Liver Cirrhosis Complicated with Primary Hepatocellular Carcinoma[J]. Nutr Cancer, 2023, 75(4): 1116-1122.
[21]
Polvieng T, Hongjinda S, Thienhiran A, et al. Effect of Sarcopenia on the Prognosis of Clinical Outcomes in Patients With Hepatocellular Carcinoma After Hepatic Resection[J]. Am Surg, 2024, 90(6): 1447-1455.
[22]
文静, 张志云, 张艳华, 马剑萍, 等. 肝硬化门静脉高压症合并原发性肝癌患者腹腔镜术后并发症危险因素分析[J]. 护理学杂志, 2023, 38(6): 27-31.
[1] 杨丽仙, 黄稚熙, 梁博诚, 欧阳淑媛, 陈明朗, 赵英丽, 马薇波, 缪敬, 王磊, 袁鹰. 基于产前时序超声数据的新生儿出生体重智能预测[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 721-732.
[2] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[3] 顾怡君, 李奕冉, 钱艺, 蒋栋. 基于超声造影定量指标预测肝细胞癌微血管侵犯及评估其复发的研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 451-461.
[4] 孙圣梅, 习一清, 安宁. 人表皮生长因子受体2阳性型乳腺癌新辅助治疗响应的基因预测模型[J/OL]. 中华普通外科学文献(电子版), 2025, 19(05): 332-339.
[5] 费继宏, 刘思嘉, 刘云建. 肠道微生态与原发性肝癌关系的研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(05): 347-350.
[6] 许月芳, 杨林森, 黎春彤. 外科术后感染使用利奈唑胺致血小板减少症的高危因素分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 682-684.
[7] 陈系东, 王绍闯, 赵何伟, 王硕, 袁维栋. 高龄BCLC B期肝癌患者常规TACE术后急性肝功能恶化的危险因素研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 689-692.
[8] 陈宁, 赵欣, 周园, 刘兵, 窦进, 王健, 张晓雨, 赵海剑. 预测绞窄性与非绞窄性腹股沟嵌顿疝:一项基于多变量逻辑回归的预测模型研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(05): 539-543.
[9] 李康虎, 刘凯, 王继伟, 王光远. 经腹腹膜前腹股沟疝修补术后尿潴留风险列线图预测模型的构建及验证[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 442-449.
[10] 李亮, 谢肖俊, 隋梁. 腹外疝的关键病理生理:肌肉减少症[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 475-477.
[11] 叶志华, 曾纪晓, 梁田, 卢慧贞, 刘斐, 徐晓钢, 兰梦龙, 陶波圆, 梁子建, 罗媛圆, 张红, 温俐妮, 钟知足. 基于CT的三维手术模型构建技术用于儿童机器人腹部手术[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(04): 228-233.
[12] 林水荣, 宋子敏, 于玺, 李绍强, 华赟鹏, 沈顺利. 术前抗病毒治疗对HBV相关肝癌肝切除术后肝衰竭影响[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 700-706.
[13] 赵俊宇, 林航宇, 李会灵, 王显飞, 游川. 肝癌肝切除术后大量腹水预测模型的建立与验证[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 740-747.
[14] 李曰平, 鞠倩, 张汝梦, 韩博. 基于CT影像组学预测胃癌根治术复发风险的临床研究[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 460-466.
[15] 高晶, 张琳, 申鑫. AIMS65、Child-Pugh和MELD评分系统联合凝血功能指标对肝硬化并发慢加急性肝衰竭的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 352-358.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?