切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2024, Vol. 14 ›› Issue (01) : 8 -15. doi: 10.3877/cma.j.issn.2095-2015.2024.01.002

论著

RNA测序研究抗菌肽KT2治疗溃疡性结肠炎的作用机制
蒋心怡1, 顾丹丹1, 叶艳1, 缪佳蓉1,()   
  1. 1. 650032 昆明医科大学第一附属医院消化内科,云南省消化系统疾病临床研究中心
  • 收稿日期:2023-05-20 出版日期:2024-02-01
  • 通信作者: 缪佳蓉
  • 基金资助:
    国家自然科学基金(82260107); 云南省兴滇英才支持计划-名医项目(RLMY20220010); 云南省高层次卫生技术人才培养经费资助(H-2018040)

Study on therapeutic mechanism of antimicrobial peptides KT2 on ulcerative colitis based on RNA sequencing

Xinyi Jiang1, Dandan Gu1, Yan Ye1, Jiarong Miao1,()   

  1. 1. Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, China
  • Received:2023-05-20 Published:2024-02-01
  • Corresponding author: Jiarong Miao
引用本文:

蒋心怡, 顾丹丹, 叶艳, 缪佳蓉. RNA测序研究抗菌肽KT2治疗溃疡性结肠炎的作用机制[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(01): 8-15.

Xinyi Jiang, Dandan Gu, Yan Ye, Jiarong Miao. Study on therapeutic mechanism of antimicrobial peptides KT2 on ulcerative colitis based on RNA sequencing[J/OL]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2024, 14(01): 8-15.

目的

通过RNA测序(RNA-seq)研究抗菌肽KT2治疗溃疡性结肠炎(UC)小鼠的分子机制。

方法

用葡聚糖硫酸钠(DSS)构造小鼠UC模型,将60只小鼠随机分为对照组、DSS组、KT2组、mCRAMP组和美沙拉嗪组5组,每组12只。评估小鼠结肠炎症程度。从对照组、DSS组和KT2组中每组随机选4只小鼠的结肠组织进行测序,鉴定差异表达基因(DEGs)并进行基因富集分析,随后用定量逆转录聚合酶链反应(qRT-PCR)进行验证。

结果

KT2组小鼠炎症程度比mCRAMP组和美沙拉嗪组更低;KT2组与DSS组相比,共得到113个DEGs,其中下调DEGs71个,上调DEGs42个。基因富集分析显示下调DEGs主要与胶原代谢有关,上调DEGs主要与生物氧化有关,筛选出差异较大且研究甚少的DEGs进行qRT-PCR验证,发现Foxp3、FUT4、IFRD1、VEGF在DSS干预后表达下调,经抗菌肽KT2治疗后表达上调;Arg2、FXR在DSS干预后表达上调,经抗菌肽KT2治疗后表达下调。

结论

抗菌肽KT2治疗UC小鼠效果优于mCRAMP和美沙拉嗪;抗菌肽KT2可能通过上调Foxp3、FUT4、IFRD1、VEGF以及下调Arg2、FXR的表达治疗UC小鼠,提示上述基因可能参与抗菌肽KT2治疗UC的分子机制。

Objective

To investigate the molecular mechanism of antimicrobial peptide KT2 in the treatment of ulcerative colitis (UC) mice using RNA sequencing (RNA-seq).

Methods

UC mice models were constructed with dextran sulfate sodium (DSS) and sixty mice were randomly divided into control group, DSS group, KT2 group, mCRAMP group and mesalazine group, with 12 mice in each group. The inflammation severity of mouse colon tissues was evaluated. Colon tissues of four mice from each group of control group, DSS group and KT2 group were randomly selected for RNA-seq, identification of differential genes (DEGs) and gene enrichment analysis, and then verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR).

Results

The inflammation severity of mouse colon tissues of KT2 group was lower than that of mCRAMP group and mesalazine group; Compared with DSS group, 113 DEGs was identified including 71 down-regulated genes and 42 up-regulated in the KT2 group. Gene set enrichment analysis suggested the down-regulated and up-regulated DEGs were mainly related to collagen metabolism and biological oxidation separately. DEGs with significant difference and few studies were screened for qRT-PCR verification. The expressions of Foxp3, FUT4, IFRD1 and VEGF were down-regulated after DSS intervention and up-regulated after treatment of antimicrobial peptide KT2. The expressions of Arg2 and FXR were up-regulated after DSS intervention, and down-regulated after antimicrobial peptide KT2 treatment.

Conclusion

The therapeutic efficacy of antimicrobial peptide KT2 in UC mice is better than mCRAMP and mesalazine; Antimicrobial peptide KT2 may treat UC mice by up-regulating the expressions of Foxp3, FUT4, IFRD1, VEGF and down-regulating the expressions of Arg2 and FXR, indicating that the above-mentioned DEGs may involve in the molecular mechanism of antimicrobial peptide KT2 in UC treatment.

表1 引物序列
表2 引物序列
图1 抗菌肽KT2对溃疡性结肠炎小鼠的治疗效果注:1A各组小鼠DAI评分;1B各组小鼠结肠形态及长度;1C各组小鼠结肠长度;1D各组小鼠病理评分;1E HE染色评估各组小鼠结肠组织病理变化;1F ELISA检测各组小鼠结肠TGF-β和粪便钙卫蛋白表达;1G qPT-PCR检测各组小鼠结肠TNF-α、IL-6、IL-1β相对表达水平。*P<0.05,**P<0.01,***P<0.001,****P<0.0001。
图2 差异表达基因(DEGs)的表达注:A DEGs表达的聚类热图;B DEGs表达的火山图(显示差异性最为显著的top20基因)。
图3 差异表达基因(DEGs)的基因本体论(GO)分析和京都基因与基因组百科全书(KEGG)分析注:A DEGs的GO富集散点图;B DEGs的KEGG信号通路富集散点图。
图4 差异表达基因(DEGs)的蛋白质相互作用分析网络图
图5 各组小鼠结肠组织中靶基因验证情况注:A Foxp3;B FUT4;C IFRD1;D VEGF;E Arg2;F FXR;G SLC51A;H Gprc5a;I COL3A1;J PGE2;K Clca4a的mRNA表达情况。*P<0.05;**P<0.01;***P<0.001;****P<0.0001。
[1]
Shao B, Yang W, Cao Q. Landscape and predictions of inflammatory bowel disease in china: china will enter the compounding prevalence stage around 2030[J]. Front Public Health, 2022, 10: 1032679.
[2]
Luo Y, Song Y. Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities[J]. Int J Mol Sci, 2021, 22(21): 11401.
[3]
Wong CCM, Zhang L, Wu WKK, et al. Cathelicidin-encoding lactococcus lactis promotes mucosal repair in murine experimental colitis[J]. J Gastroenterol Hepatol, 2017, 32(3): 609-619.
[4]
Yoo JH, Ho S, Tran DHY, et al. Anti-fibrogenic effects of the anti-microbial peptide cathelicidin in murine colitis-associated fibrosis[J]. Cell Mol Gastroenterol Hepatol, 2015, 1(1): 55-74. e1.
[5]
Maraming P, Klaynongsruang S, Boonsiri P, et al. Anti-metastatic effects of cationic kt2 peptide(a lysine/tryptophan-rich peptide) on human melanoma a375. s2 cells[J]. In Vivo(Athens, Greece), 2021, 35(1): 215-227.
[6]
Gu D, Nan Q, Miao Y, et al. KT2 alleviates ulcerative colitis by reducing th17 cell differentiation through the mir-302c-5p/stat3 axis[J]. Eur J Cell Biol, 2022, 101(2): 151223.
[7]
王怡如, 周唯, 蒋笑影, 等. 美沙拉秦干预下IBD小鼠结肠组织的转录组分析[J]. 中国实验动物学报, 2022, 30(1): 7-16.
[8]
Lv Q, Wang K, Qiao S, et al. Norisoboldine, a natural ahr agonist, promotes treg differentiation and attenuates colitis via targeting glycolysis and subsequent nad+/sirt1/suv39h1/h3k9me3 signaling pathway[J]. Cell Death Dis, 2018, 9(3): 258.
[9]
Maraming P, Maijaroen S, Klaynongsruang S, et al. Antitumor ability of kt2 peptide derived from leukocyte peptide of crocodile against human hct116 colon cancer xenografts[J]. In Vivo(Athens, Greece), 2018, 32(5): 1137-1144.
[10]
Liu YJ, Tang B, Wang FC, et al. Parthenolide ameliorates colon inflammation through regulating treg/th17 balance in a gut microbiota-dependent manner[J]. Theranostics, 2020, 10(12): 5225-5241.
[11]
Meira LB, Bugni JM, Green SL, et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice[J]. J Clin Invest, 2008, 118(7): 2516-2525.
[12]
Zhang W, Michalowski CB, Beloqui A. Oral delivery of biologics in inflammatory bowel disease treatment[J]. Front Bioeng Biotechnol, 2021, 9: 675194.
[13]
Quandt J, Arnovitz S, Haghi L, et al. Wnt-β-catenin activation epigenetically reprograms treg cells in inflammatory bowel disease and dysplastic progression[J]. Nat Immunol, 2021, 22(4): 471-484.
[14]
Martin-Rodriguez O, Gauthier T, Bonnefoy F, et al. Pro-resolving factors released by macrophages after efferocytosis promote mucosal wound healing in inflammatory bowel disease[J]. Front Immunol, 2021, 12: 754475.
[15]
Jurisic G, Sundberg JP, Detmar M. Blockade of vegf receptor-3 aggravates inflammatory bowel disease and lymphatic vessel enlargement[J]. Inflamm Bowel Dis, 2013, 19(9): 1983-1989.
[16]
Coburn LA, Horst SN, Allaman MM, et al. L-arginine availability and metabolism is altered in ulcerative colitis[J]. Inflamm Bowel Dis, 2016, 22(8): 1847-1858.
[17]
Baier J, Gänsbauer M, Giessler C, et al. Arginase impedes the resolution of colitis by altering the microbiome and metabolome[J]. J Clin Invest, 2020, 130(11): 5703-5720.
[18]
Cheluvappa R. Identification of new potential therapies for colitis amelioration using an appendicitis-appendectomy model[J]. Inflamm Bowel Dis, 2019, 25(3): 436-444.
[19]
Zhou M, Wang D, Li X, et al. Farnesoid-x receptor as a therapeutic target for inflammatory bowel disease and colorectal cancer[J]. Front Pharmacol, 2022, 13: 1016836.
[1] 于桐, 孙姗姗, 刘扬. 乳腺导管原位癌的浸润转化机制及临床病理特征[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 304-307.
[2] 李蓉. 薄型子宫内膜治疗新方法[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 591-591.
[3] 严华悦, 刘子祥, 周少波. 磷酸烯醇式丙酮酸羧激酶-1在恶性肿瘤中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 452-456.
[4] 朱江, 张进, 孔云飞, 李军, 宋旭. 核梭杆菌和胰腺癌的关系及临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 448-451.
[5] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[6] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[7] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[8] 王庭宇, 邵联波, 刘珊, 沈振亚. Stanford A 型主动脉夹层相关基因KIF20A 的共表达网络构建及作用靶点分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 303-312.
[9] 董晓斌, 张静, 苏莎莎, 莎比亚·沙吾提, 盛好. 溃疡性结肠炎患者相关环状RNA 差异表达谱分析及功能研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 499-509.
[10] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[11] 王梦琪, 刘恒昌, 陈海鹏, 刘佳. 骶神经刺激治疗排便失禁的机制研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 417-422.
[12] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[13] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[14] 徐靖亭, 孔璐. PARP抑制剂治疗卵巢癌的耐药机制及应对策略[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 584-588.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?