切换至 "中华医学电子期刊资源库"

中华消化病与影像杂志(电子版) ›› 2024, Vol. 14 ›› Issue (06) : 524 -530. doi: 10.3877/cma.j.issn.2095-2015.2024.06.008

论著

miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究
史清泉1, 苗彬2, 王烁3, 陶琳4, 沈晨4,()   
  1. 1.100010 首都医科大学附属北京中医医院重症医学科
    2.100050 首都医科大学附属北京友谊医院感染科
    3.100010 首都医科大学附属北京中医医院感染性疾病科
    4.100010 首都医科大学附属北京中医医院消化科
  • 收稿日期:2024-08-11 出版日期:2024-12-01
  • 通信作者: 沈晨
  • 基金资助:
    国家自然科学基金(82274259)

Study on the mechanism of miR-181a-5p targeting ATG5 to inhibit autophagy in rat pancreatic acinar AR42J cells induced by cerulein

Qingquan Shi1, Bin Miao2, Shuo Wang3, Lin Tao4, Chen Shen4,()   

  1. 1.Department of Critical Care Medicine,Beijing Hospital of Traditional Chinese Medicine,Capital Medical University,Beijing 100010,China
    2.Department of Infectious Diseases,Beijing Friendship Hospital,Capital Medical University,Beijing 100050,China
    3.Department of Infectious Diseases,Beijing Hospital of Traditional Chinese Medicine,Capital Medical University,Beijing 100010,China
    4.Department of Gastroenterology,Beijing Hospital of Traditional Chinese Medicine,Capital Medical University,Beijing 100010,China
  • Received:2024-08-11 Published:2024-12-01
  • Corresponding author: Chen Shen
引用本文:

史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.

Qingquan Shi, Bin Miao, Shuo Wang, Lin Tao, Chen Shen. Study on the mechanism of miR-181a-5p targeting ATG5 to inhibit autophagy in rat pancreatic acinar AR42J cells induced by cerulein[J]. Chinese Journal of Digestion and Medical Imageology(Electronic Edition), 2024, 14(06): 524-530.

目的

探讨miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J 自噬的机制。

方法

通过100 nmol/L 雨蛙素处理AR42J 细胞体外模拟急性胰腺炎(AP),并将miR-181a-5p mimics 和oe-ATG5 转染至AR42J 细胞,分为Control组(未经任何处理)、AP组(模型组)、AP+mimic NC 和AP+mimic miR组(转染mimic NC 或miR-181a-5p mimic 至AR42J 细胞24 h,再经雨蛙素诱导建模)、AP+mimic miR+oe-NC 和AP+mimic miR+oe-ATG5组(共转染miR-181a-5p mimic、oe-NC 或oe-ATG5 至AR42J 细胞24 h,再经雨蛙素诱导建模)。使用ELISA检测TNF-α 和IL-6 的表达水平,RT-qPCR 检测miR-181a-5p 表达。采用MTT 测定细胞活力,免疫荧光检测自噬标记物LC3。miRWalk 数据库预测miR-181a-5p 和ATG5 的潜在结合位点,并通过双荧光素酶报告实验验证miR-181a-5p 与ATG5 的靶向关系。Western blot 检测自噬相关蛋白(Beclin-1、LC3 Ⅱ/I)和ATG5 蛋白的表达。

结果

成功构建AP 体外模型,AP组中TNF-α 和IL-6 表达水平较Control组显著升高,且miR-181a-5p 在雨蛙素诱导的AR42J 细胞中显著下调。与AP+mimic NC组相比,AP+mimic miR组细胞活力显著提高,自噬相关蛋白Beclin-1 和LC3 Ⅱ/I的表达显著下调,LC3阳性细胞数量减少。双荧光素酶实验结果显示,miR-181a-5p 可靶向负调控ATG5 的表达。进一步实验表明,过表达ATG5 可部分逆转miR-181a-5p 过表达对雨蛙素诱导自噬的抑制作用。

结论

miR-181a-5p通过靶向负调控ATG5,抑制雨蛙素诱导的AR42J 细胞自噬。这一机制可能在AP 的自噬调控中发挥重要作用。

Objective

To investigate the mechanism of miR-181a-5p targeting ATG5 to inhibit autophagy in rat pancreatic acinar AR42J cells induced by cerulein.

Methods

AR42J cells were treated with 100 nmol/L cerulein in vitro to simulate acute pancreatitis (AP). miR-181a-5p mimics and oe-ATG5 were transfected into AR42J cells. AR42J cells were divided into Control group (without any treatment),AP group (model group),AP+mimic NC and AP+mimic miR groups (transfected mimic NC or miR-181a-5p mimic into AR42J cells for 24 h,and then modeled induced by cerulein),and AP+mimic miR+oe-NC and AP+mimic miR+oe-ATG5 groups (transfected miR-181a-5p mimic,oe-NC or oe-ATG5 into AR42J cells for 24 h,and then modeled induced by cerulein). ELISA was used to determine the expression levels of TNF-α and IL-6,and RT-qPCR was performed to determine the expression of miR-181a-5p. MTT assay was used to assess cell viability,and immunofluorescence was conducted to detect the autophagy marker LC3. The miRWalk database predicted potential binding sites between miR-181a-5p and ATG5,and the dual-luciferase reporter assay was used to verify the targeting relationship between miR-181a-5p and ATG5. Western blot analysis was employed to measure the expression levels of autophagy-related proteins (Beclin-1,LC3 Ⅱ/I) and ATG5 protein.

Results

An in vitro AP model was successfully established. Significantly increased levels of TNF-α and IL-6 were noticed in the AP group compared to the Control group. miR-181a-5p expression was down-regulated in cerulein-induced AR42J cells. Compared to the AP+mimic NC group,the AP+mimic miR group showed increased cell viability,down-regulated expression patterns of autophagy-related proteins Beclin-1 and LC3 Ⅱ/I,and a reduced number of LC3-positive cells. Dual-luciferase reporter assay revealed that miR-181a-5p negatively regulated ATG5. Further experiments indicated that re-expression of ATG5 could partially reverse the inhibitory effect of miR-181a-5p overexpression on autophagy induced by cerulein in AR42J cells.

Conclusion

miR-181a-5p inhibits cerulein-induced autophagy in AR42J cells by targeting ATG5. This mechanism may play a crucial role in autophagy regulation in AP.

表1 引物序列
图1 急性胰腺炎模型的造模情况 注:ELISA 检测TNF-α 和IL-6 表达,两组间比较,**P<0.01。
图2 miR-181a-5p 在雨蛙素诱导的AR42J 细胞低表达 注:RT-qPCR 检测miR-181a-5p 表达水平,两组间比较,***P<0.001。
图3 过表达miR-181a-5p 抑制雨蛙素诱导的AR42J 细胞自噬 注:3A RT-qPCR 检测miR-181a-5p 表达水平;3B MTT 检测细胞活力;3C Western blot 检测自噬相关蛋白(Beclin-1、LC3 Ⅱ/I)表达;3D 免疫荧光检测自噬小m 体标志物LC3 表达。两组间比较,**P<0.01,***P<0.001。
图4 miR-181a-5p 靶向负调控ATG5 注:4A miRWalk 数据库预测miR-181a-5p 和ATG5 之间存在的潜在结合位点;4B 双荧光素酶报告实验验证miR-181a-5p 和ATG5 之间的结合关系;4C WB 检测ATG5 蛋白表达水平。**P<0.01,***P<0.001。
图5 上调ATG5 部分逆转过表达miR-181a-5p 对雨蛙素诱导AR42J 细胞自噬的抑制作用 注:5A WB 检测ATG5、Beclin-1 和LC3 Ⅱ/I蛋白表达水平;5B MTT 检测细胞活力;5C 免疫荧光检测LC3 阳性细胞水平。*P<0.05。
[1]
Zhou J,Zhou P,Zhang Y,et al. Signal Pathways and Markers Involved in Acute Lung Injury Induced by Acute Pancreatitis[J]. Dis Markers,2021,2021: 9947047.
[2]
Földi M,Gede N,Kiss S,et al. The characteristics and prognostic role of acute abdominal on-admission pain in acute pancreatitis: A prospective cohort analysis of 1432 cases[J]. Eur J Pain,2022,26(3):610-623.
[3]
Gómez-Virgilio L,Silva-Lucero MD,Flores-Morelos DS,et al.Autophagy: A Key Regulator of Homeostasis and Disease: An Overview of Molecular Mechanisms and Modulators[J]. Cells,2022,11(15): 2262.
[4]
Ding WX,Ma X,Kim S,et al. Recent insights about autophagy in pancreatitis. eGastroenterology,2024,2(2): e100057.
[5]
Silwal P,Kim YS,Basu J,et al. The roles of microRNAs in regulation of autophagy during bacterial infection[J]. Semin Cell Dev Biol,2020,101: 51-58.
[6]
Akkoc Y,Gozuacik D. MicroRNAs as major regulators of the autophagy pathway[J]. Biochim Biophys Acta Mol Cell Res,2020,1867(5): 118662.
[7]
Ashrafizadeh M,Zarrabi A,Orouei S,et al. MicroRNA-mediated autophagy regulation in cancer therapy: The role in chemoresistance/chemosensitivity[J]. Eur J Pharmacol,2021,892: 173660.
[8]
Wei JL,Li YC,Ma ZL,et al. MiR-181a-5p promotes anoikis by suppressing autophagy during detachment induction in the mammary epithelial cell line MCF10A[J]. Protein Cell,2016,7(4): 305-309.
[9]
Benedetti R,Papulino C,Sgueglia G,et al. Regulatory Interplay between miR-181a-5p and Estrogen Receptor Signaling Cascade in Breast Cancer[J]. Cancers(Basel),2021,13(3): 543.
[10]
Changotra H,Kaur S,Yadav SS,et al. ATG5: A central autophagy regulator implicated in various human diseases[J]. Cell Biochem Funct,2022,40(7): 650-667.
[11]
Honda S,Arakawa S,Yamaguchi H,et al. Association Between Atg5-independent Alternative Autophagy and Neurodegenerative Diseases[J]. J Mol Biol,2020,432(8): 2622-2632.
[12]
Park JW,Kim Y,Lee SB,et al. Autophagy inhibits cancer stemness in triple-negative breast cancer via miR-181a-mediated regulation of ATG5 and/or ATG2B[J]. Mol Oncol,2022,16(9): 1857-1875.
[13]
王伟,朱婷婷,刘家豪. miR-132 靶向调控PTEN 基因对雨蛙素诱导的急性胰腺炎模型胰腺腺泡细胞增殖及凋亡的影响[J]. 国际消化病杂志,2022,42(4): 261-266.
[14]
Padula D,Mauro A,Maggioni P,et al. Practical approach to acute pancreatitis: from diagnosis to the management of complications[J].Intern Emerg Med,2024,19(8): 2091-2104.
[15]
Zhou W,Dong S,Chen Z,et al. New challenges for microRNAs in acute pancreatitis: progress and treatment[J]. J Transl Med,2022,20(1): 192.
[16]
Hidalgo NJ,Pando E,Mata R,et al. Impact of comorbidities on hospital mortality in patients with acute pancreatitis: a populationbased study of 110,021 patients[J]. BMC Gastroenterol,2023,23(1): 81.
[17]
Tsomidis I,Voumvouraki A,Kouroumalis E. The Pathogenesis of Pancreatitis and the Role of Autophagy[J]. Gastroenterol Insights,2024,15,303-341.
[18]
Zhang T,Gan Y,Zhu S. Association between autophagy and acute pancreatitis[J]. Front Genet,2023,14: 998035.
[19]
Ge T,Ning B,Wu Y,et al. MicroRNA-specific therapeutic targets and biomarkers of apoptosis following myocardial ischemiareperfusion injury[J]. Mol Cell Biochem,2024,479(10): 2499-2521.
[20]
Galagali H,Kim JK. The multifaceted roles of microRNAs in differentiation[J]. Curr Opin Cell Biol,2020,67: 118-140.
[21]
Fu Y,Xin Z,Ling Z,et al. A CREB1-miR-181a-5p loop regulates the pathophysiologic features of bone marrow stromal cells in fibrous dysplasia of bone[J]. Mol Med,2021,27(1): 81.
[22]
Zhang Y,Guan Y,Zheng X,et al. Hypoxia-induced miR-181a-5p up-regulation reduces epirubicin sensitivity in breast cancer cells through inhibiting EPDR1/TRPC1 to activate PI3K/AKT signaling pathway[J]. BMC Cancer,2024,24(1): 167.
[23]
Ye X,Zhou XJ,Zhang H. Exploring the Role of Autophagy-Related Gene 5(ATG5) Yields Important Insights Into Autophagy in Autoimmune/Autoinflammatory Diseases[J]. Front Immunol,2018,9: 2334.
[24]
张瑜,辛前有,冯亚飞,等. 急性胰腺炎患者血清miR-181a-5p 表达及与Th17/Treg 免疫平衡的关系[J]. 河北医学,2023,29(1): 115-120.
[25]
Li Fan,Hu Zhenfei,Huang Yidan,et al. Dexmedetomidine ameliorates diabetic cardiomyopathy by inhibiting ferroptosis through the Nrf2/GPX4 pathway[J]. J Cardiothorac Surg,2023,18: 223.
[26]
Runwal G,Stamatakou E,Siddiqi FH,et al. LC3-positive structures are prominent in autophagy-deficient cells[J]. Sci Rep,2019,9(1): 10147.
[27]
潘春风. miR-181a-5p 靶向HMGB1 调控急性胰腺炎腺泡细胞增殖及凋亡的实验研究[D]. 右江民族医学院,2023.
[28]
黄燕,杨艳清,万睿,等. miR-181-5p 靶向PTEN/AKT/mTOR 通路对氧化应激诱导下人皮肤成纤维细胞自噬及老化的影响[J]. 中国老年学杂志,2023,43(18): 4538-4542.
[29]
陈晨晖,程楠,彭伟,等. 急性胰腺炎患者外周血 ATG5、miR-30-5p 水平与患者病情严重程度及预后的关系[J]. 检验医学与临床,2022,19(14): 1886-1890.
[30]
Shan C,Chen X,Cai H,et al. The Emerging Roles of Autophagy-Related MicroRNAs in Cancer[J]. Int J Biol Sci,2021,17(1): 134-150.
[1] 陆婷, 范晴敏, 王洁, 万晓静, 许春芳, 董凤林. 超声引导下经皮穿刺置管引流对重症急性胰腺炎的疗效及应用时机的选择[J]. 中华医学超声杂志(电子版), 2024, 21(05): 511-516.
[2] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[3] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[4] 白香妮, 孙巨军, 谢鹤, 李宏斌. 急性胰腺炎患者血清微小RNA-142-3p和磷脂酰肌醇3-激酶水平变化及对并发腹腔感染风险预测[J]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 222-228.
[5] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[6] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[7] 党军强, 杨雁灵, 汪庆强, 尚琳, 朱磊, 项红军. 主动经皮穿刺引流治疗重症急性胰腺炎并发急性坏死物积聚的疗效分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 671-674.
[8] 曾明芬, 王艳. 急性胰腺炎合并脂肪肝患者CT 与彩色多普勒超声诊断参数与其病情和预后的关联性研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(06): 531-535.
[9] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[10] 杨爽, 余宏亮, 谢敏. CT 与超声检查对急性胰腺炎合并脂肪肝的诊断价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(06): 541-544.
[11] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[12] 宋燕秋, 戚桂艳, 杨双双, 周萍. 重症急性胰腺炎肠道菌群特征及早期肠内营养联合微生态制剂治疗的临床价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 442-447.
[13] 刘伟, 高续, 谢玉海, 蒋哲, 刘士成. 基于增强CT影像组学模型在预测急性胰腺炎复发中的应用价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 348-354.
[14] 田娜, 韩飞天. 基于CT平扫影像组学模型与系统免疫炎症指数预测急性胰腺炎复发模型的建立[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 355-359.
[15] 刘霖, 张文欢, 宋雅茹, 姜云璐. Apelin-13 在阿尔茨海默病中的神经保护作用机制研究进展[J]. 中华诊断学电子杂志, 2024, 12(04): 276-280.
阅读次数
全文


摘要