| [1] |
Goulden MR. The pain of chronic pancreatitis: a persistent clinical challenge[J]. Br J Pain, 2013, 7(1): 8-22.
|
| [2] |
Uchida M, Ito T, Nakamura T, et al. Pancreatic stellate cells and CX3CR1: occurrence in normal pancreas and acute and chronic pancreatitis and effect of their activation by a CX3CR1 agonist[J]. Pancreas, 2014, 43(5): 708-719.
|
| [3] |
Shah N, Siriwardena AK. Cytokine profiles in patients receiving antioxidant therapy within the ANTICIPATE trial[J]. World J Gastroenterol, 2013, 19(25): 4001-4006.
|
| [4] |
Zhu HY, Liu X, Miao X, et al. Up-regulation of CXCR4 expression contributes to persistent abdominal pain in rats with chronic pancreatitis[J]. Mol Pain, 2017, 13: 1744806917697979.
|
| [5] |
Liu L, Shenoy M, Pasricha PJ. Substance P and calcitonin gene related peptide mediate pain in chronic pancreatitis and their expression is driven by nerve growth factor[J]. JOP, 2011, 12(4): 389-394.
|
| [6] |
He SQ, Yao JR, Zhang FX, et al. Inflammation and nerve injury induce expression of pancreatitis-associated protein-II in primary sensory neurons[J]. Mol Pain, 2010, 6: 23.
|
| [7] |
Lau TT, Wang DA. Stromal cell-derived factor-1(SDF-1): homing factor for engineered regenerative medicine[J]. Expert Opin Biol Ther, 2011, 11(2): 189-197.
|
| [8] |
Asquith DL, Bryce SA, Nibbs RJ. Targeting cell migration in rheumatoid arthritis[J]. Curr Opin Rheumatol, 2015, 27(2): 204-211.
|
| [9] |
Banisadr G. Integrin/Chemokine receptor interactions in the pathogenesis of experimental autoimmune encephalomyelitis[J]. J Neuroimmune Pharmacol, 2014, 9(3): 438-445.
|
| [10] |
Calì B, Deygas M, Munari F, et al. Atypical CXCL12 signaling enhances neutrophil migration by modulating nuclear deformability [J]. Sci Signal, 2022, 15(761): eabk2552.
|
| [11] |
Gui M, Huang J, Sheng H, et al. High-Dose Vitamin C Alleviates Pancreatic Necrosis by Inhibiting Platelet Activation Through the CXCL12/CXCR4 Pathway in Severe Acute Pancreatitis[J]. J Inflamm Res, 2023, 16: 2865-2877.
|
| [12] |
崔丽娜, 郑小红, 余嘉豪, 等. CXCL12-CXCR4/CXCR7信号轴在肝再生和肝纤维化中的作用[J]. 中华肝脏病杂志, 2021, 29(9): 900-903.
|
| [13] |
Li Q, Peng J. Sensory nerves and pancreatitis[J]. Gland Surg, 2014, 3(4): 284-292.
|
| [14] |
Wang S. Adrenergic signaling mediates mechanical hyperalgesia through activation of P2X3 receptors in primary sensory neurons of rats with chronic pancreatitis[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 308(8): G710-719.
|
| [15] |
Yang F. SDF1-CXCR4 signaling contributes to persistent pain and hypersensitivity via regulating excitability of primary nociceptive neurons: involvement of ERK-dependent Nav1. 8 up-regulation[J]. J Neuroinflammation, 2015, 12: 219.
|
| [16] |
Fischer BD, Ho C, Kuzin I, et al. Chronic exposure to tumor necrosis factor in vivo induces hyperalgesia, upregulates sodium channel gene expression and alters the cellular electrophysiology of dorsal root ganglion neurons[J]. Neurosci Lett, 2017, 653: 195-201.
|
| [17] |
Kitamura N. Nerve growth factor-induced hyperexcitability of rat sensory neuron in culture[J]. Biomed Res, 2005, 26(3): 123-130.
|
| [18] |
Qiu F, Li Y, Fu Q, et al. Stromal Cell-Derived Factor 1 Increases Tetrodotoxin-Resistant Sodium Currents Nav1. 8 and Nav1. 9 in Rat Dorsal Root Ganglion Neurons via Different Mechanisms[J]. Neurochem Res, 2016, 41(7): 1587-1603.
|
| [19] |
Obreja O, Rukwied R, Steinhoff M, et al. Neurogenic components of trypsin-and thrombin-induced inflammation in rat skin, in vivo[J]. Exp Dermatol, 2006, 15(1): 58-65.
|
| [20] |
Schmid E, Leierer J, Doblinger A, et al. Neurokinin a is a main constituent of sensory neurons innervating the anterior segment of the eye[J]. Invest Ophthalmol Vis Sci, 2005, 46(1): 268-274.
|
| [21] |
Khalil Z, Merhi M, Livett BG. Differential involvement of conotoxin-sensitive mechanisms in neurogenic vasodilatation responses: effects of age[J]. J Gerontol A Biol Sci Med Sci, 2001, 56(8): B356-363.
|