[1] |
江学良. 中国中西医结合学会消化系统疾病专业委员会炎症性肠病专家委员会.中国中西医结合炎症性肠病质量控制指标共识[J/OL]. 中华消化病与影像杂志(电子版), 2021, 11(4): 149-151.
|
[2] |
谢晶日, 陈善涛, 刘芝伟. 溃疡性结肠炎发病机制研究进展[J]. 海南医学院学报, 2022, 28(23): 1835-1840.
|
[3] |
江学良. 溃疡性结肠炎中西医诊疗手册[M]. 天津: 天津科学技术出版社, 2020: 1-500
|
[4] |
Majzoub ME, Paramsothy S, Haifer C, et al. The phageome of patients with ulcerative colitis treated with donor fecal microbiota reveals markers associated with disease remission[J]. Nat Commun, 2024, 15(1): 8979.
|
[5] |
Zou Z. Conceptual transition from molecular to atomic: unleashing a new era in hydrogen therapy for chronic disease[J]. Natl Sci Rev, 2024, 11(4): nwae046.
|
[6] |
Zhang G, Li Z, Meng C, et al. The anti-inflammatory effect of hydrogen on lung transplantation model of pulmonary microvascular endothelial cells during cold storage period[J]. Transplantation, 2018, 102(8): 1253-1261.
|
[7] |
张红涛, 于洋, 刘玲玲, 等. JNK在氢气改善重度脓毒症小鼠肠屏障功能障碍中的作用[J]. 天津医药, 2016, 44(5): 573-576, 659.
|
[8] |
Wang G, Xu B, Shi F, et al. Protective effect of methane-rich saline on acetic acid-induced ulcerative colitis via blocking the TLR4/NF-κB/MAPK pathway and promoting IL-10/JAK1/STAT3-mediated anti-inflammatory response[J]. Oxid Med Cell Longev, 2019, 2019: 7850324.
|
[9] |
Fan Q, Chang H, Tian L, et al. Methane saline suppresses ferroptosis via the Nrf2/HO-1 signaling pathway to ameliorate intestinal ischemia-reperfusion injury[J]. Redox Rep, 2024, 29(1): 2373657.
|
[10] |
Jiang Z, Mei L, Li Y, et al. Enzymatic regulation of the gut microbiota: mechanisms and implications for host health[J]. Biomolecules, 2024, 14(12): 1638.
|
[11] |
Yi CM, Huang SS, Zhang WL, et al. Synergistic interactions between gut microbiota and short chain fatty acids: pioneering therapeutic frontiers in chronic disease management[J]. Microb Pathog, 2025, 199: 107231.
|
[12] |
Qi Q, Zhang H, Jin Z, et al. Hydrogen sulfide produced by the gut microbiota impairs host metabolism via reducing GLP-1 levels in male mice[J]. Nat Metab, 2024, 6(8): 1601-1615.
|
[13] |
Stummer N, Feichtinger RG, Weghuber D, et al. Role of hydrogen sulfide in inflammatory bowel disease[J]. Antioxidants, 2023, 12(8): 1570.
|
[14] |
Mukherjee R, Rana R, Mehan S, et al. Investigating the Interplay Between the Nrf2/Keap1/HO-1/SIRT-1 Pathway and the p75NTR/ PI3K/Akt/MAPK Cascade in Neurological Disorders: Mechanistic Insights and Therapeutic Innovations[J]. Mol Neurobiol, 62(6): 7597-7646.
|
[15] |
Jin T, Lu H, Zhou Q, et al. H2S-releasing versatile montmorillonite nanoformulation trilogically renovates the gut microenvironment for inflammatory bowel disease modulation[J]. Adv Sci, 2024, 11(14): e2308092.
|
[16] |
Munteanu C, Turnea MA, Rotariu M. Hydrogen sulfide: an emerging regulator of oxidative stress and cellular homeostasis—a comprehensive one-year review[J]. Antioxidants, 2023, 12(9): 1737.
|
[17] |
Chi Q, Wang D, Hu X, et al. Hydrogen sulfide gas exposure induces necroptosis and promotes inflammation through the MAPK/NF-κB pathway in broiler spleen[J]. Oxid Med Cell Longev, 2019, 2019: 8061823.
|
[18] |
刘鹏飞, 梁国刚. 硫化氢在炎症性肠病中的作用研究进展[J]. 中国慢性病预防与控制, 2024, 32(2): 147-151.
|
[19] |
Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine[J]. Nature, 1988, 333(6174): 664-666.
|
[20] |
Zumft WG. Cell biology and molecular basis of denitrification[J]. Microbiol Mol Biol Rev, 1997, 61(4): 533-616.
|
[21] |
Wang Y, Bian Z, Wang Y. Biofilm formation and inhibition mediated by bacterial quorum sensing[J]. Appl Microbiol Biotechnol, 2022, 106(19/20): 6365-6381.
|
[22] |
李洪东, 余加林, 谭利平, 等. 信号分子AI-2通过密度感应系统促进铜绿假单胞菌生物被膜形成和毒力因子产生[J]. 陆军军医大学学报, 2022, 44(14): 1440-1444.
|
[23] |
Andrabi SM, Sharma NS, Karan A, et al. Nitric oxide: physiological functions, delivery, and biomedical applications[J]. Adv Sci, 2023, 10(30): e2303259.
|
[24] |
Singer II, Kawka DW, Scott S, et al. Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease[J]. Gastroenterology, 1996, 111(4): 871-885.
|
[25] |
刘伟, 孙大裕. 氢呼气试验的临床应用[J]. 国外医学(消化系疾病分册), 2005, 25(6): 365-367.
|
[26] |
Gasbarrini A, Corazza GR, Gasbarrini G, et al. Methodology and indications of H2-breath testing in gastrointestinal diseases: the Rome Consensus Conference[J]. Aliment Pharmacol Ther, 2009, 29(Suppl 1): 1-49.
|
[27] |
阚美佳, 张尤历, 徐岷. 炎症性肠病与小肠细菌过度生长关系的荟萃分析[J]. 胃肠病学和肝病学杂志, 2019, 28(11): 1256-1261.
|
[28] |
Ghoshal UC, Yadav A, Fatima B, et al. Small intestinal bacterial overgrowth in patients with inflammatory bowel disease: a case-control study[J]. Indian J Gastroenterol, 2022, 41(1): 96-103.
|
[29] |
Andrei M, Nicolaie T, Stoicescu A, et al. Intestinal microbiome, small intestinal bacterial overgrowth and inflammatory bowel diseases—what are the connections?[J]. Curr Health Sci J, 2015, 41(3): 197-203.
|
[30] |
郭怀珠, 董文欣, 张曦, 等. 硫化氢呼气试验在小肠细菌过度生长诊断中的应用价值初探[J]. 中华内科杂志, 2021, 60(4): 356-361.
|
[31] |
Lundberg JO, Hellström PM, Lundberg JM, et al. Greatly increased luminal nitric oxide in ulcerative colitis[J]. Lancet, 1994, 344(8938): 1673-1674.
|
[32] |
Avdagić N, Zaćiragić A, Babić N, et al. Nitric oxide as a potential biomarker in inflammatory bowel disease[J]. Bosn J Basic Med Sci, 2013, 13(1): 5-9.
|
[33] |
Fujiki Y, Tanaka T, Yakabe K, et al. Hydrogen gas and the gut microbiota are potential biomarkers for the development of experimental colitis in mice[J]. Gut Microbiome, 2023, 5: e3.
|
[34] |
Liu H, Chen D, Yang X, et al. Intestine-targeted controlled hydrogen-releasing MgH2 microcapsules for improving the mitochondrial metabolism of inflammatory bowel disease[J]. Adv Funct Mater, 2024, 34(18): 2316227.
|